scholarly journals The human spleen is a major reservoir for long-lived vaccinia virus–specific memory B cells

Blood ◽  
2008 ◽  
Vol 111 (9) ◽  
pp. 4653-4659 ◽  
Author(s):  
Maria Mamani-Matsuda ◽  
Antonio Cosma ◽  
Sandra Weller ◽  
Ahmad Faili ◽  
Caroline Staib ◽  
...  

Abstract The fact that you can vaccinate a child at 5 years of age and find lymphoid B cells and antibodies specific for this vaccination 70 years later remains an immunologic enigma. It has never been determined how these long-lived memory B cells are maintained and whether they are protected by storage in a special niche. We report that, whereas blood and spleen compartments present similar frequencies of IgG+ cells, antismallpox memory B cells are specifically enriched in the spleen where they account for 0.24% of all IgG+ cells (ie, 10-20 million cells) more than 30 years after vaccination. They represent, in contrast, only 0.07% of circulating IgG+ B cells in blood (ie, 50-100 000 cells). An analysis of patients either splenectomized or rituximab-treated confirmed that the spleen is a major reservoir for long-lived memory B cells. No significant correlation was observed between the abundance of these cells in blood and serum titers of antivaccinia virus antibodies in this study, including in the contrasted cases of B cell– depleting treatments. Altogether, these data provide evidence that in humans, the two arms of B-cell memory—long-lived memory B cells and plasma cells—have specific anatomic distributions—spleen and bone marrow—and homeostatic regulation.

2000 ◽  
Vol 191 (7) ◽  
pp. 1149-1166 ◽  
Author(s):  
Louise J. McHeyzer-Williams ◽  
Melinda Cool ◽  
Michael G. McHeyzer-Williams

The mechanisms that regulate B cell memory and the rapid recall response to antigen remain poorly defined. This study focuses on the rapid expression of B cell memory upon antigen recall in vivo, and the replenishment of quiescent B cell memory that follows. Based on expression of CD138 and B220, we reveal a unique and major subtype of antigen-specific memory B cells (B220−CD138−) that are distinct from antibody-secreting B cells (B220+/−CD138+) and B220+CD138− memory B cells. These nonsecreting somatically mutated B220− memory responders rapidly dominate the splenic response and comprise >95% of antigen-specific memory B cells that migrate to the bone marrow. By day 42 after recall, the predominant quiescent memory B cell population in the spleen (75–85%) and the bone marrow (>95%) expresses the B220− phenotype. Upon adoptive transfer, B220− memory B cells proliferate to a lesser degree but produce greater amounts of antibody than their B220+ counterparts. The pattern of cellular differentiation after transfer indicates that B220− memory B cells act as stable self-replenishing intermediates that arise from B220+ memory B cells and produce antibody-secreting cells on rechallenge with antigen. Cell surface phenotype and Ig isotype expression divide the B220− compartment into two main subsets with distinct patterns of integrin and coreceptor expression. Thus, we identify new cellular components of B cell memory and propose a model for long-term protective immunity that is regulated by a complex balance of committed memory B cells with subspecialized immune function.


2007 ◽  
Vol 15 (2) ◽  
pp. 182-193 ◽  
Author(s):  
Elizabeth A. Clutterbuck ◽  
Sarah Oh ◽  
Mainga Hamaluba ◽  
Sharon Westcar ◽  
Peter C. L. Beverley ◽  
...  

ABSTRACT Glycoconjugate vaccines have dramatically reduced the incidence of encapsulated bacterial diseases in toddlers under 2 years of age, but vaccine-induced antibody levels in this age group wane rapidly. We immunized adults and 12-month-old toddlers with heptavalent pneumococcal conjugate vaccine to determine differences in B-cell and antibody responses. The adults and 12-month-old toddlers received a pneumococcal conjugate vaccine. The toddlers received a second dose at 14 months of age. The frequencies of diphtheria toxoid and serotype 4, 14, and 23F polysaccharide-specific plasma cells and memory B cells were determined by enzyme-linked immunospot assay. The toddlers had no preexisting polysaccharide-specific memory B cells or serum immunoglobulin G (IgG) antibody but had good diphtheria toxoid-specific memory responses. The frequencies of plasma cells and memory B cells increased by day 7 (P < 0.0001) in the adults and the toddlers following a single dose of conjugate, but the polysaccharide responses were significantly lower in the toddlers than in the adults (P = 0.009 to <0.001). IgM dominated the toddler antibody responses, and class switching to the IgG was serotype dependent. A second dose of vaccine enhanced the antibody and memory B-cell responses in the toddlers but not the ex vivo plasma cell responses. Two doses of pneumococcal conjugate vaccine are required in toddlers to generate memory B-cell frequencies and antibody class switching for each pneumococcal polysaccharide equivalent to that seen in adults.


2004 ◽  
Vol 199 (4) ◽  
pp. 593-602 ◽  
Author(s):  
Barbara J. Hebeis ◽  
Karin Klenovsek ◽  
Peter Rohwer ◽  
Uwe Ritter ◽  
Andrea Schneider ◽  
...  

Humoral immunity is maintained by long-lived plasma cells, constitutively secreting antibodies, and nonsecreting resting memory B cells that are rapidly reactivated upon antigen encounter. The activation requirements for resting memory B cells, particularly the role of T helper cells, are unclear. To analyze the activation of memory B cells, mice were immunized with human cytomegalovirus, a complex human herpesvirus, and tick-born encephalitis virus, and a simple flavivirus. B cell populations devoid of Ig-secreting plasma cells were adoptively transferred into T and B cell–deficient RAG-1−/− mice. Antigenic stimulation 4–6 d after transfer of B cells resulted in rapid IgG production. The response was long lasting and strictly antigen specific, excluding polyclonal B cell activation. CD4+ T cells were not involved since (a) further depletion of CD4+ T cells in the recipient mice did not alter the antibody response and (b) recipient mice contained no detectable CD4+ T cells 90 d posttransfer. Memory B cells could not be activated by a soluble viral protein without T cell help. Transfer of memory B cells into immunocompetent animals indicated that presence of helper T cells did not enhance the memory B cell response. Therefore, our results indicate that activation of virus-specific memory B cells to secrete IgG is independent of cognate or bystander T cell help.


Author(s):  
Anna Vaisman-Mentesh ◽  
Yael Dror ◽  
Ran Tur-Kaspa ◽  
Dana Markovitch ◽  
Tatiana Kournos ◽  
...  

The breadth of the humoral immune response following SARS-CoV-2 infection was indicated to be important for recovery from COVID-19. Recent studies have provided valuable insights regarding the dynamics of the antibody response in symptomatic COVID-19 patients. However, the information regarding the dynamics of the serological and cellular memory in COVID-19 recovered patients in scarce. It is imperative to determine the persistence of humoral memory in COVID-19 recovered patients as it will help to evaluate the susceptibility of recovered patients to re-infection. Here, we describe the dynamics of both the SARS-CoV-2 specific serological and B cell response in COVID-19 recovered patients. We found that symptomatic SARS-CoV-2 patients mount a robust antibody response following infection however, the serological memory decays in recovered patients over the period of 6 months. On the other hand, the B cell response as observed in the SARS-CoV-2 specific memory B cell compartment, was found to be stable over time. Moreover, the frequency of SARS-CoV-2 specific B cell plasmablasts was found to be associated with the SARS-CoV-2 specific antibody levels. These data, suggests that the differentiation of short-lived plasmablasts to become long-lived plasma cells is impaired and the main contributor of antibody production are the short-lived plasmablasts. Overall, our data provides insights regarding the humoral memory persistence in recovered COVID-19 patients. Notwithstanding the insights from this study, it is still to be determined if the persistence of SARS-CoV-2 memory B cells can be considered as a correlate of protection in the absence of serological memory.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2982-2982
Author(s):  
Bita Sahaf ◽  
Kartoosh Heydari ◽  
George Chen ◽  
David Miklos

Abstract B cells are implicated in the pathophysiology of chronic graft-vs-host disease (cGVHD) and anti-B cell rituximab is effective cGVHD therapy. We have treated 31 MCL and CLL patients with a nonmyeloablative transplant preparative regimen consisting of total lymphoid irradiation (TLI, 80 cGy in 10 fractions, days -11 to -1) and anti-thymocyte globulin (ATG, 1.5mg/kg/day, days -11 to -7, total 7.5mg/kg) followed by rituximab 375mg/m2 on days 56, 63, 70, and 77 after transplant. Primary GVHD prophylaxis was mycophenolic acid and cyclosporine tapered off by 6 months. Thus far, two patients with MCL have died of disease progression before rituximab infusion and the remaining 29 are alive. Here we study B cell reconstitution in 12 patients with more than one year of follow-up. We used Hi-D FACS technology to distinguish common lymphoid progenitors (CD34+CD117+), early B cell progenitors (CD34+CD10+CD19+), pre B cells (CD3−CD19+CD10+CD34−), immature B cells (CD3−CD19+CD10+CD20+CD5−IgM+), mature and memory B cells (CD3−CD19+CD20+CD27+), and plasma cells (CD138+CD38+). Peripheral B cells (CD19+CD20+) remained undetectable 6 and 9 months after transplant. Peripheral blood CD19+ cells were first detected in 3/9 patients at 1 year and 6/6 patients at 1.5 years. The majority of recovering peripheral blood B cells expressed a memory phenotype (CD19+CD27+, n–=6). Bone marrow aspirates collected 180 and 365 days post transplant showed CD34+CD117+ lymphoid progenitors (n=4) are increased after rituximab and then decline from 13–20% of cells 180 days post transplant to 3–8% of cells 365 days post transplant. Control patients transplanted using a TLI-ATG regimen without rituximab infusion show a lymphoid progenitor cell frequency of 4–7% (n=3). CD19+CD10+ immature progenitor B cells accumulated after rituximab, comprised 3–6% of lymphoid cells in the bone marrow 90 and 180 days after HCT (n=4), and with time were replaced by mature B cells lacking CD10 expression. IgM and/or IgD expressing mature cells (that usually express CD20) were rarely detected in bone marrow until peripheral CD19+ B cell recovery. As expected the frequency of CD19+CD27+ mature memory B cells was very low at 0.3–1.5% (n=4). Finally, CD38+CD138+ plasma cells accounted for 0.5–2% of bone marrow before and after rituximab. In summary, B cells recover from increased proportion of lymphoid progenitors with reconstitution recapitulating B cell ontogeny. No adverse infusion events occurred with rituximab and infectious complications reflected usual transplant incidence including CMV and VZV reactivation, influenza B, aspergillus and pseudomonal bacteremia. Plasma IgG levels increased from the patient’s peritransplant baseline to 110% at 9 months, 158% at 12 months, and 124% at 18months. At 6, 9, and 12 months, EBV titer was 76%, 104%, and 103% relative to pretransplant patient titers demonstrating protective antibodies are maintained despite rituximab therapy presumably secreted from long-lived CD20 negative plasma cells. Thus far, no allogeneic antibody responses have developed in the five male with female donors against H-Y antigens and suggest post-HCT rituximab prevent or diminish allogeneic B cell responses. This first trial of rituximab treatment 2 months after allogeneic HCT was well tolerated, patients maintained protective humoral immunity, and peripheral blood B cells reconstituted 12–18 months after transplant.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 238-238 ◽  
Author(s):  
Aniko Ginta Pordes ◽  
Christina Hausl ◽  
Peter Allacher ◽  
Rafi Uddin Ahmad ◽  
Eva M Muchitsch ◽  
...  

Abstract Memory B cells specific for factor VIII (FVIII) are critical for maintaining FVIII inhibitors in patients with hemophilia A. They are precursors of anti-FVIII antibody-producing plasma cells and are highly efficient antigen-presenting cells for the activation of T cells. The eradication of FVIII-specific memory B cells will be a prerequisite for any successful new approach to induce immune tolerance in patients with FVIII inhibitors. Little is known about the regulation of these cells. Previously we showed that ligands for toll-like receptors (TLR) 7 and 9 are able to re-stimulate FVIII-specific memory B cells in the absence of T-cell help. However, alternative “helper cells” such as dendritic cells are essential for providing help to memory B cells under such conditions. Based on these findings, we asked which co-stimulatory interactions are required for the restimulation of memory B cells in the presence of dendritic cells and ligands for TLR and whether these co-stimulatory interactions are the same as those required for the restimulation of memory B cells in the presence of activated T cells. We used spleen cells from hemophilic mice treated with human FVIII to generate highly purified populations of memory B cells, CD4+ T cells and dendritic cells. The required purity was achieved by a combination of magnetic bead separation and fluorescence-activated cell sorting. The memory B cell compartment was specified by the expression of CD19 together with IgG and the absence of surface IgM and IgD. Memory B cells were cultured in the presence of FVIII to stimulate their differentiation into anti-FVIII antibody-producing plasma cells. Different combinations of CD4+ T cells, ligands for TLR 7 and 9 and dendritic cells were added to the memory-B-cell cultures. Blocking antibodies and competitor proteins were used to specify the co-stimulatory interactions required for the re-stimulation of memory B cells in the presence of either CD4+ T cells or dendritic cells and ligands for TLR 7 and 9. Our results demonstrate that the blockade of B7-1 and B7-2 as well as the blockade of CD40L inhibit the re-stimulation of FVIII-specific memory B cells and their differentiation into anti-FVIII antibody-producing plasma cells in the presence of T-cell help. Similar requirements apply for the re-stimulation of memory B cells in the presence of dendritic cells and ligands for TLR 7 or 9. Dendritic cells in the absence of ligands for TLR are not able to provide help for the re-stimulation of memory B cells, which indicates that dendritic cells need to be activated. Furthermore, ligands for TLR 7 or 9 were not able to re-stimulate memory B cells in the complete absence of dendritic cells. Based on these results we conclude that dendritic cells activated by ligands for TLR 7 or 9 can substitute for activated CD4+ T cells in providing co-stimulatory help for memory-B-cell re-stimulation. CD40-CD40L interactions seem to be the most important co-stimulatory interactions for the re-stimulation of memory B cells, not only in the presence of activated CD4+ T cells but also in the presence of ligands for TLR and dendritic cells.


1998 ◽  
Vol 72 (4) ◽  
pp. 3479-3483 ◽  
Author(s):  
Susan E. Coffin ◽  
Paul A. Offit

ABSTRACT We investigated the capacity of intramuscular (i.m.) immunization with heterologous-host rotavirus (simian strain RRV) to induce mucosal virus-specific memory B cells in mice. We found that prior i.m. immunization enhanced the magnitude of mucosal virus-specific immunoglobulin A (IgA) production but did not alter the site and timing of induction of virus-specific IgA responses after challenge.


1998 ◽  
Vol 187 (8) ◽  
pp. 1169-1178 ◽  
Author(s):  
Christophe Arpin ◽  
Odette de Bouteiller ◽  
Diane Razanajaona ◽  
Isabelle Fugier-Vivier ◽  
Francine Brière ◽  
...  

Human myeloma are incurable hematologic cancers of immunoglobulin-secreting plasma cells in bone marrow. Although malignant plasma cells can be almost eradicated from the patient's bone marrow by chemotherapy, drug-resistant myeloma precursor cells persist in an apparently cryptic compartment. Controversy exists as to whether myeloma precursor cells are hematopoietic stem cells, pre–B cells, germinal center (GC) B cells, circulating memory cells, or plasma blasts. This situation reflects what has been a general problem in cancer research for years: how to compare a tumor with its normal counterpart. Although several studies have demonstrated somatically mutated immunoglobulin variable region genes in multiple myeloma, it is unclear if myeloma cells are derived from GCs or post-GC memory B cells. Immunoglobulin (Ig)D-secreting myeloma have two unique immunoglobulin features, including a biased λ light chain expression and a Cμ–Cδ isotype switch. Using surface markers, we have previously isolated a population of surface IgM−IgD+CD38+ GC B cells that carry the most impressive somatic mutation in their IgV genes. Here we show that this population of GC B cells displays the two molecular features of IgD-secreting myeloma cells: a biased λ light chain expression and a Cμ–Cδ isotype switch. The demonstration of these peculiar GC B cells to differentiate into IgD-secreting plasma cells but not memory B cells both in vivo and in vitro suggests that IgD-secreting plasma and myeloma cells are derived from GCs.


Sign in / Sign up

Export Citation Format

Share Document