scholarly journals SARS-CoV-2 specific memory B cells frequency in recovered patient remains stable while antibodies decay over time

Author(s):  
Anna Vaisman-Mentesh ◽  
Yael Dror ◽  
Ran Tur-Kaspa ◽  
Dana Markovitch ◽  
Tatiana Kournos ◽  
...  

The breadth of the humoral immune response following SARS-CoV-2 infection was indicated to be important for recovery from COVID-19. Recent studies have provided valuable insights regarding the dynamics of the antibody response in symptomatic COVID-19 patients. However, the information regarding the dynamics of the serological and cellular memory in COVID-19 recovered patients in scarce. It is imperative to determine the persistence of humoral memory in COVID-19 recovered patients as it will help to evaluate the susceptibility of recovered patients to re-infection. Here, we describe the dynamics of both the SARS-CoV-2 specific serological and B cell response in COVID-19 recovered patients. We found that symptomatic SARS-CoV-2 patients mount a robust antibody response following infection however, the serological memory decays in recovered patients over the period of 6 months. On the other hand, the B cell response as observed in the SARS-CoV-2 specific memory B cell compartment, was found to be stable over time. Moreover, the frequency of SARS-CoV-2 specific B cell plasmablasts was found to be associated with the SARS-CoV-2 specific antibody levels. These data, suggests that the differentiation of short-lived plasmablasts to become long-lived plasma cells is impaired and the main contributor of antibody production are the short-lived plasmablasts. Overall, our data provides insights regarding the humoral memory persistence in recovered COVID-19 patients. Notwithstanding the insights from this study, it is still to be determined if the persistence of SARS-CoV-2 memory B cells can be considered as a correlate of protection in the absence of serological memory.

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261656
Author(s):  
Raphael A. Reyes ◽  
Kathleen Clarke ◽  
S. Jake Gonzales ◽  
Angelene M. Cantwell ◽  
Rolando Garza ◽  
...  

SARS-CoV-2 infection elicits a robust B cell response, resulting in the generation of long-lived plasma cells and memory B cells. Here, we aimed to determine the effect of COVID-19 severity on the memory B cell response and characterize changes in the memory B cell compartment between recovery and five months post-symptom onset. Using high-parameter spectral flow cytometry, we analyzed the phenotype of memory B cells with reactivity against the SARS-CoV-2 spike protein or the spike receptor binding domain (RBD) in recovered individuals who had been hospitalized with non-severe (n = 8) or severe (n = 5) COVID-19. One month after symptom onset, a substantial proportion of spike-specific IgG+ B cells showed an activated phenotype. In individuals who experienced non-severe disease, spike-specific IgG+ B cells showed increased expression of markers associated with durable B cell memory, including T-bet and FcRL5, as compared to individuals who experienced severe disease. While the frequency of T-bet+ spike-specific IgG+ B cells differed between the two groups, these cells predominantly showed an activated switched memory B cell phenotype in both groups. Five months post-symptom onset, the majority of spike-specific memory B cells had a resting phenotype and the percentage of spike-specific T-bet+ IgG+ memory B cells decreased to baseline levels. Collectively, our results highlight subtle differences in the B cells response after non-severe and severe COVID-19 and suggest that the memory B cell response elicited during non-severe COVID-19 may be of higher quality than the response after severe disease.


2021 ◽  
Author(s):  
Raphael Reyes ◽  
Kathleen Clarke ◽  
S. Jake Gonzales ◽  
Angelene M. Cantwell ◽  
Rolando Garza ◽  
...  

SARS-CoV-2 infection elicits a robust B cell response, resulting in the generation of long-lived plasma cells and memory B cells. Here, we aimed to determine the effect of COVID-19 severity on the memory B cell response and characterize changes in the memory B cell compartment between recovery and five months post-symptom onset. Using high-parameter spectral flow cytometry, we analyzed the phenotype of memory B cells with reactivity against the SARS-CoV-2 spike protein or the spike receptor binding domain (RBD) in recovered individuals who had been hospitalized with non-severe (n=8) or severe (n=5) COVID-19. One month after symptom onset, a substantial proportion of spike-specific IgG+ B cells showed an activated phenotype. In individuals who experienced non-severe disease, spike-specific IgG+ B cells showed increased expression of markers associated with durable B cell memory, including T-bet, FcRL5, and CD11c, which was not observed after severe disease. Five months post-symptom onset, the majority of spike-specific memory B cells had a resting phenotype and the percentage of spike-specific T-bet+ IgG+ memory B cells decreased to baseline levels. Collectively, our results suggest that the memory B cell response elicited during non-severe COVID-19 may be of higher quality than the response after severe disease.


Blood ◽  
2009 ◽  
Vol 114 (24) ◽  
pp. 4998-5002 ◽  
Author(s):  
Geraldine Blanchard-Rohner ◽  
Anoop S. Pulickal ◽  
Cornelia M. Jol-van der Zijde ◽  
Matthew D. Snape ◽  
Andrew J. Pollard

AbstractIn humans, the kinetics of the appearance of memory B cells and plasma cells during primary immunization are not well defined. In this study, we assessed the primary B-cell response of rabies-antigen naive volunteers during a 3-dose course of rabies vaccine compared with the B-cell response to a booster dose of rabies vaccine given to previously immunized volunteers. After a single dose of vaccine, in the naive group plasma and memory B cells appeared later (peak at day 10) than in the primed group (peak at day 7) and were at lower frequency. The most rapid responses (day 4) were detected after a third immunization in the naive group. This is the first study to document the detailed kinetics of the plasma cell and memory B-cell responses to immunization in adult humans and to demonstrate differences in the responses that relate to the preexisting immune status of the persons.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
María C. Amezcua Vesely ◽  
Daniela A. Bermejo ◽  
Carolina L. Montes ◽  
Eva V. Acosta-Rodríguez ◽  
Adriana Gruppi

In this review, we discuss how protozoan parasites alter immature and mature B cell compartment. B1 and marginal zone (MZ) B cells, considered innate like B cells, are activated during protozoan parasite infections, and they generate short lived plasma cells providing a prompt antibody source. In addition, protozoan infections induce massive B cell response with polyclonal activation that leads to hypergammaglobulnemia with serum antibodies specific for the parasites and self and/or non related antigens. To protect themselves, the parasites have evolved unique ways to evade B cell immune responses inducing apoptosis of MZ and conventional mature B cells. As a consequence of the parasite induced-apoptosis, the early IgM response and an already establish humoral immunity are affected during the protozoan parasite infection. Moreover, some trypanosomatides trigger bone marrow immature B cell apoptosis, influencing the generation of new mature B cells. Simultaneously with their ability to release antibodies, B cells produce cytokines/quemokines that influence the characteristic of cellular immune response and consequently the progression of parasite infections.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 204-204 ◽  
Author(s):  
Sonja Werwitzke ◽  
Marcus von Hornung ◽  
Katy Kalippke ◽  
Arne Trummer ◽  
Arnold Ganser ◽  
...  

Abstract Abstract 204 The formation of inhibitory antibodies to factor VIII (FVIII) is the foremost complication of replacement therapy in hemophilia A. Patients with inhibitors are treated with very high doses of FVIII, over prolonged periods of time, to induce immune tolerance. Studies in a hemophilia A mouse model demonstrated that very high doses of FVIII can induce apoptosis in FVIII-specific memory B cells and prevent their differentiation into antibody-secreting cells. The Fc gamma receptor IIb (FcgRIIb) is expressed on B cells and mediates inhibitory signals after crosslinking with the B cell receptor. Here, we studied the potential role of this receptor in the regulation of memory B cell response to FVIII. FVIII knockout mice (B6;129S4-F8tm2Kaz/J) were crossed with FcgRIIb knockout mice (B6;129S4-Fcgr2btm1Ttk/J). Comparing F8−/− mice and F8−/−/FcgR2b−/− double knockout mice, the initial anti-FVIII antibody formation was similar after intravenous exposure to 4 weekly doses of 80 or 400 IU/kg. Similar numbers of FVIII-specific antibody-secreting cells were detected in the spleen and bone marrow by ELISPOT. As previously shown, in vitro re-stimulation of memory B cells from spleens of immunized F8−/− mice at doses of 1 to 200 ng/ml induced their differentiation into antibody-secreting cells. Higher doses of 400 to 800 ng/ml prevented differentiation. In F8−/−/FcgR2b−/− double knockout mice, however, formation of antibody-secreting cells was completely inhibited across all FVIII doses tested. Addition of B220-depleted splenocytes from F8−/− mice did not restore memory B cell function in F8−/−/FcgR2b−/− double knockout mice, indicating that the observed effect was not due to dysfunction of follicular dendritic cells or other antigen-presenting cells. Inhibition of FcgRIIb using a monoclonal antibody prevented the FVIII-specific memory B cell response in splenocytes from immunized F8−/− mice. Staining with propidium iodide, annexin V, or anti-caspase 3 indicated increased rates of apoptosis when FcgRIIb was blocked during re-stimulation. In summary, FcgRIIb plays a crucial role for the differentiation of FVIII-specific splenic memory B cells into antibody-secreting cells. Inhibition of FcgRIIb appears to sensitize B cells for apoptosis during re-stimulation with FVIII. This mechanism could potentially facilitate the eradication of FVIII-specific memory B cells during ITI. Disclosures: No relevant conflicts of interest to declare.


Parasitology ◽  
2020 ◽  
Vol 147 (9) ◽  
pp. 994-998 ◽  
Author(s):  
Halina M. Pietrzak ◽  
Lisa J. Ioannidis ◽  
Diana S. Hansen

AbstractEmerging evidence started to delineate multiple layers of memory B cells, with distinct effector functions during recall responses. Whereas most studies examining long-lived memory B cell responses have focussed on the IgG+ memory B cell compartment, IgM+ memory B cells have only recently started to receive attention. It has been proposed that unlike IgG+ memory B cells, which differentiate into antibody-secreting plasma cells upon antigen re-encounter, IgM+ memory B cells might have the additional capacity to establish secondary germinal centre (GC) responses. The precise function of IgM+ memory B cells in the humoral immune response to malaria has not been fully defined. Using a murine model of severe malaria infection and adoptive transfer strategies we found that IgM+ memory B cells induced in responses to P. berghei ANKA readily proliferate upon re-infection and adopt a GC B cell-like phenotype. The results suggest that that IgM+ memory B cells might play an important role in populating secondary GCs after re-infection with Plasmodium, thereby initiating the induction of B cell clones with enhanced affinity for antigen, at faster rates than naive B cells.


2021 ◽  
Author(s):  
Zijun Wang ◽  
Frauke Muecksch ◽  
Dennis Schaefer-Babajew ◽  
Shlomo Finkin ◽  
Charlotte Viant ◽  
...  

Over one year after its inception, the coronavirus disease-2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) remains difficult to control despite the availability of several excellent vaccines. Progress in controlling the pandemic is slowed by the emergence of variants that appear to be more transmissible and more resistant to antibodies. Here we report on a cohort of 63 COVID-19-convalescent individuals assessed at 1.3, 6.2 and 12 months after infection, 41% of whom also received mRNA vaccines. In the absence of vaccination antibody reactivity to the receptor binding domain (RBD) of SARS-CoV-2, neutralizing activity and the number of RBD-specific memory B cells remain relatively stable from 6 to 12 months. Vaccination increases all components of the humoral response, and as expected, results in serum neutralizing activities against variants of concern that are comparable to or greater than neutralizing activity against the original Wuhan Hu-1 achieved by vaccination of naive individuals. The mechanism underlying these broad-based responses involves ongoing antibody somatic mutation, memory B cell clonal turnover, and development of monoclonal antibodies that are exceptionally resistant to SARS-CoV-2 RBD mutations, including those found in variants of concern. In addition, B cell clones expressing broad and potent antibodies are selectively retained in the repertoire over time and expand dramatically after vaccination. The data suggest that immunity in convalescent individuals will be very long lasting and that convalescent individuals who receive available mRNA vaccines will produce antibodies and memory B cells that should be protective against circulating SARS-CoV-2 variants. Should memory responses evolve in a similar manner in vaccinated individuals, additional appropriately timed boosting with available vaccines could cover most circulating variants of concern.


2007 ◽  
Vol 15 (2) ◽  
pp. 182-193 ◽  
Author(s):  
Elizabeth A. Clutterbuck ◽  
Sarah Oh ◽  
Mainga Hamaluba ◽  
Sharon Westcar ◽  
Peter C. L. Beverley ◽  
...  

ABSTRACT Glycoconjugate vaccines have dramatically reduced the incidence of encapsulated bacterial diseases in toddlers under 2 years of age, but vaccine-induced antibody levels in this age group wane rapidly. We immunized adults and 12-month-old toddlers with heptavalent pneumococcal conjugate vaccine to determine differences in B-cell and antibody responses. The adults and 12-month-old toddlers received a pneumococcal conjugate vaccine. The toddlers received a second dose at 14 months of age. The frequencies of diphtheria toxoid and serotype 4, 14, and 23F polysaccharide-specific plasma cells and memory B cells were determined by enzyme-linked immunospot assay. The toddlers had no preexisting polysaccharide-specific memory B cells or serum immunoglobulin G (IgG) antibody but had good diphtheria toxoid-specific memory responses. The frequencies of plasma cells and memory B cells increased by day 7 (P < 0.0001) in the adults and the toddlers following a single dose of conjugate, but the polysaccharide responses were significantly lower in the toddlers than in the adults (P = 0.009 to <0.001). IgM dominated the toddler antibody responses, and class switching to the IgG was serotype dependent. A second dose of vaccine enhanced the antibody and memory B-cell responses in the toddlers but not the ex vivo plasma cell responses. Two doses of pneumococcal conjugate vaccine are required in toddlers to generate memory B-cell frequencies and antibody class switching for each pneumococcal polysaccharide equivalent to that seen in adults.


2019 ◽  
Vol 93 (8) ◽  
Author(s):  
Lauren E. Williamson ◽  
Andrew I. Flyak ◽  
Nurgun Kose ◽  
Robin Bombardi ◽  
Andre Branchizio ◽  
...  

ABSTRACT The human B cell response to natural filovirus infections early after recovery is poorly understood. Previous serologic studies suggest that some Ebola virus survivors exhibit delayed antibody responses with low magnitude and quality. Here, we sought to study the population of individual memory B cells induced early in convalescence. We isolated monoclonal antibodies (MAbs) from memory B cells from four survivors treated for Ebola virus disease (EVD) 1 or 3 months after discharge from the hospital. At the early time points postrecovery, the frequency of Ebola-specific B cells was low and dominated by clones that were cross-reactive with both Ebola glycoprotein (GP) and with the secreted GP (sGP) form. Of 25 MAbs isolated from four donors, only one exhibited neutralization activity. This neutralizing MAb, designated MAb EBOV237, recognizes an epitope in the glycan cap of the surface glycoprotein. In vivo murine lethal challenge studies showed that EBOV237 conferred protection when given prophylactically at a level similar to that of the ZMapp component MAb 13C6. The results suggest that the human B cell response to EVD 1 to 3 months postdischarge is characterized by a paucity of broad or potent neutralizing clones. However, the neutralizing epitope in the glycan cap recognized by EBOV237 may play a role in the early human antibody response to EVD and should be considered in rational design strategies for new Ebola virus vaccine candidates. IMPORTANCE The pathogenesis of Ebola virus disease (EVD) in humans is complex, and the mechanisms contributing to immunity are poorly understood. In particular, it appears that the quality and magnitude of the human B cell response early after recovery from EVD may be reduced compared to most viral infections. Here, we isolated human monoclonal antibodies from B cells of four survivors of EVD at 1 or 3 months after hospital discharge. Ebola-specific memory B cells early in convalescence were low in frequency, and the antibodies they encoded demonstrated poor neutralizing potencies. One neutralizing antibody that protected mice from lethal infection, EBOV237, was identified in the panel of 25 human antibodies isolated. Recognition of the glycan cap epitope recognized by EBOV237 suggests that this antigenic site should be considered in vaccine design and treatment strategies for EVD.


2004 ◽  
Vol 199 (4) ◽  
pp. 593-602 ◽  
Author(s):  
Barbara J. Hebeis ◽  
Karin Klenovsek ◽  
Peter Rohwer ◽  
Uwe Ritter ◽  
Andrea Schneider ◽  
...  

Humoral immunity is maintained by long-lived plasma cells, constitutively secreting antibodies, and nonsecreting resting memory B cells that are rapidly reactivated upon antigen encounter. The activation requirements for resting memory B cells, particularly the role of T helper cells, are unclear. To analyze the activation of memory B cells, mice were immunized with human cytomegalovirus, a complex human herpesvirus, and tick-born encephalitis virus, and a simple flavivirus. B cell populations devoid of Ig-secreting plasma cells were adoptively transferred into T and B cell–deficient RAG-1−/− mice. Antigenic stimulation 4–6 d after transfer of B cells resulted in rapid IgG production. The response was long lasting and strictly antigen specific, excluding polyclonal B cell activation. CD4+ T cells were not involved since (a) further depletion of CD4+ T cells in the recipient mice did not alter the antibody response and (b) recipient mice contained no detectable CD4+ T cells 90 d posttransfer. Memory B cells could not be activated by a soluble viral protein without T cell help. Transfer of memory B cells into immunocompetent animals indicated that presence of helper T cells did not enhance the memory B cell response. Therefore, our results indicate that activation of virus-specific memory B cells to secrete IgG is independent of cognate or bystander T cell help.


Sign in / Sign up

Export Citation Format

Share Document