scholarly journals Vascular dermatan sulfate regulates the antithrombotic activity of heparin cofactor II

Blood ◽  
2008 ◽  
Vol 111 (8) ◽  
pp. 4118-4125 ◽  
Author(s):  
Li He ◽  
Tusar K. Giri ◽  
Cristina P. Vicente ◽  
Douglas M. Tollefsen

AbstractHeparin cofactor II (HCII)–deficient mice form occlusive thrombi more rapidly than do wild-type mice following injury to the carotid arterial endothelium. Dermatan sulfate (DS) and heparan sulfate (HS) increase the rate of inhibition of thrombin by HCII in vitro, but it is unknown whether vascular glycosaminoglycans play a role in the antithrombotic effect of HCII in vivo. In this study, we found that intravenous injection of either wild-type recombinant HCII or a variant with low affinity for HS (K173H) corrected the abnormally short thrombosis time of HCII-deficient mice, while a variant with low affinity for DS (R189H) had no effect. When HCII was incubated with frozen sections of the mouse carotid artery, it bound specifically to DS in the adventitia. HCII was undetectable in the wall of the uninjured carotid artery, but it became concentrated in the adventitia following endothelial injury. These results support the hypothesis that HCII interacts with DS in the vessel wall after disruption of the endothelium and that this interaction regulates thrombus formation in vivo.

Blood ◽  
2006 ◽  
Vol 108 (2) ◽  
pp. 510-514 ◽  
Author(s):  
Miroslava Požgajová ◽  
Ulrich J. H. Sachs ◽  
Lutz Hein ◽  
Bernhard Nieswandt

Platelet activation plays a central role in hemostasis and thrombosis. Many platelet agonists function through G-protein–coupled receptors. Epinephrine activates the α2A-adrenergic receptor (α2A) that couples to Gz in platelets. Although α2A was originally cloned from platelets, its role in thrombosis and hemostasis is still unclear. Through analysis of α2A-deficient mice, variable tail bleeding times were observed. In vitro, epinephrine potentiated activation/aggregation responses of wild-type but not α2A-deficient platelets as determined by flow cytometry and aggregometry, whereas perfusion studies showed no differences in platelet adhesion and thrombus formation on collagen. To test the in vivo relevance of α2A deficiency, mice were subjected to 3 different thrombosis models. As expected, α2A-deficient mice were largely protected from lethal pulmonary thromboembolism induced by the infusion of collagen/epinephrine. In a model of FeCl3-induced injury in mesenteric arterioles, α2A–/– mice displayed a 2-fold increase in embolus formation, suggesting thrombus instability. In a third model, the aorta was mechanically injured, and blood flow was measured with an ultrasonic flow probe. In wild-type mice, all vessels occluded irreversibly, whereas in 24% of α2A-deficient mice, the initially formed thrombi embolized and blood flow was reestablished. These results demonstrate that α2A plays a significant role in thrombus stabilization.


Blood ◽  
2007 ◽  
Vol 110 (13) ◽  
pp. 4261-4267 ◽  
Author(s):  
Cristina P. Vicente ◽  
Li He ◽  
Douglas M. Tollefsen

Heparin cofactor II (HCII) is a plasma protein that inhibits thrombin when bound to dermatan sulfate or heparin. HCII-deficient mice are viable and fertile but rapidly develop thrombosis of the carotid artery after endothelial injury. We now report the effects of HCII deficiency on atherogenesis and neointima formation. HCII-null or wild-type mice, both on an apolipoprotein E–null background, were fed an atherogenic diet for 12 weeks. HCII-null mice developed plaque areas in the aortic arch approximately 64% larger than wild-type mice despite having similar plasma lipid and glucose levels. Neointima formation was induced by mechanical dilation of the common carotid artery. Thrombin activity, determined by hirudin binding or chromogenic substrate hydrolysis within 1 hour after injury, was higher in the arterial walls of HCII-null mice than in wild-type mice. After 3 weeks, the median neointimal area was 2- to 3-fold greater in HCII-null than in wild-type mice. Dermatan sulfate administered intravenously within 48 hours after injury inhibited neointima formation in wild-type mice but had no effect in HCII-null mice. Heparin did not inhibit neointima formation. We conclude that HCII deficiency promotes atherogenesis and neointima formation and that treatment with dermatan sulfate reduces neointima formation in an HCII-dependent manner.


2001 ◽  
Vol 86 (11) ◽  
pp. 1215-1220 ◽  
Author(s):  
C. P. Vicente ◽  
P. Zancan ◽  
L. L. Peixoto ◽  
R. Alves-Sá ◽  
F. S. Araújo ◽  
...  

SummaryWe compared the anticoagulant, antithrombotic and bleeding effects of highly sulfated dermatan sulfates from invertebrates and their mammalian counterpart. An invertebrate dermatan sulfate containing 2-O-sulfated α-L-iduronic acid and 4-O-sulfated N-acetyl-β-D-galactosamine residues is a potent anticoagulant due to a high heparin cofactor II activity. It inhibits thrombin due to the formation of a covalent complex with heparin cofactor II, as in the case of mammalian dermatan sulfate, but the effect occurs at lower concentrations for the invertebrate polysaccharide. Surprisingly, the invertebrate dermatan sulfate has a lower potency to prevent thrombus formation on an experimental model and a lower bleeding effect in rats than the mammalian dermatan sulfate. In contrast, another invertebrate dermatan sulfate, also enriched in 2-O-sulfated α-L-iduronic acid, but in this case sulfated at O-6 position of the N-acetyl-β-D-galactosamine units, has no in vitro or in vivo anticoagulant activity, does not prevent thrombus formation but shows a bleeding effect similar to the mammalian glycosaminoglycan. Overall, these results demonstrate unbalanced effects of dermatan sulfates with different sulfation patterns on coagulation, thrombosis and bleeding, and raise interesting questions concerning the relationship among these three biological actions of sulfated polysaccharides.


Blood ◽  
2004 ◽  
Vol 104 (13) ◽  
pp. 3965-3970 ◽  
Author(s):  
Cristina P. Vicente ◽  
Li He ◽  
Mauro S. G. Pavão ◽  
Douglas M. Tollefsen

Abstract Heparin cofactor II (HCII) is a plasma protein that inhibits thrombin rapidly in the presence of dermatan sulfate or heparin. We previously reported that the time to thrombotic occlusion of the carotid artery after photochemical injury was shorter in HCII-deficient mice than in wild-type control animals. In this paper, we describe the antithrombotic activity of dermatan sulfate in wild-type and HCII-deficient mice. Intravenous administration of porcine skin dermatan sulfate induced a dose-dependent prolongation of the carotid artery occlusion time in HCII+/+ mice that was not observed in HCII-/- animals. Pharmacokinetic studies suggested that porcine skin dermatan sulfate expresses antithrombotic activity after being transferred from the plasma to sites in the vessel wall. Using invertebrate dermatan sulfate preparations, we showed that N-acetylgalactosamine-4-O-sulfate residues are required for the HCII-dependent antithrombotic effect. Furthermore, the invertebrate dermatan sulfates, which have higher charge densities than mammalian dermatan sulfate, slightly prolonged the thrombotic occlusion time of HCII-/- mice. These results indicate that HCII mediates the antithrombotic effect of porcine skin dermatan sulfate after injury to the carotid arterial endothelium in mice, whereas more highly charged dermatan sulfates possess weak antithrombotic activity independent of HCII. (Blood. 2004;104:3965-3970)


2002 ◽  
Vol 74 (1) ◽  
pp. 105-112 ◽  
Author(s):  
MAURO S. G. PAVÃO

Dermatan sulfates and heparin, similar to the mammalian glycosaminoglycans, but with differences in the degree and position of sulfation were previously isolated from the body of the ascidian Styela plicata and Ascidia nigra. These differences produce profound effects on their anticoagulant properties. S. plicata dermatan sulfate composed by 2-O-sulfatedalpha-L-iduronic acid and 4-O-sulfated N-acetyl-beta-D-galactosamine residues is a potent anticoagulant due to a high heparin cofactor II activity. Surprisingly, it has a lower potency to prevent thrombus formation on an experimental model and a lower bleeding effect in rats than the mammalian dermatan sulfate. In contrast, A. nigra dermatan sulfate, also enriched in 2-O-sulfated alpha-L-iduronic acid, but in this case sulfated at O-6 of the N-acetyl-beta-D-galactosamine units, has no in vitro or in vivo anticoagulant activity, does not prevent thrombus formation but shows a bleeding effect similar to the mammalian glycosaminoglycan. Ascidian heparin, composed by 2-O-sulfated alpha-L-iduronic acid, N- and 6-O-sulfated glucosamine (75%) and alpha-L-iduronic acid, N- and 6-O-sulfated glucosamine (25%) disaccharide units has an anticoagulant activity 10 times lower than the mammalian heparin, is about 20 times less potent in the inhibition of thrombin by antithrombin, but has the same heparin cofactor II activity as mammalian heparin.


2017 ◽  
Vol 37 (5) ◽  
pp. 823-835 ◽  
Author(s):  
Christopher W. Smith ◽  
Steven G. Thomas ◽  
Zaher Raslan ◽  
Pushpa Patel ◽  
Maxwell Byrne ◽  
...  

Objective— Leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is a collagen receptor that belongs to the inhibitory immunoreceptor tyrosine-based inhibition motif–containing receptor family. It is an inhibitor of signaling via the immunoreceptor tyrosine-based activation motif–containing collagen receptor complex, glycoprotein VI-FcRγ-chain. It is expressed on hematopoietic cells, including immature megakaryocytes, but is not detectable on platelets. Although the inhibitory function of LAIR-1 has been described in leukocytes, its physiological role in megakaryocytes and in particular in platelet formation has not been explored. In this study, we investigate the role of LAIR-1 in megakaryocyte development and platelet production by generating LAIR-1–deficient mice. Approach and Results— Mice lacking LAIR-1 exhibit a significant increase in platelet counts, a prolonged platelet half-life in vivo, and increased proplatelet formation in vitro. Interestingly, platelets from LAIR-1–deficient mice exhibit an enhanced reactivity to collagen and the glycoprotein VI–specific agonist collagen-related peptide despite not expressing LAIR-1, and mice showed enhanced thrombus formation in the carotid artery after ferric chloride injury. Targeted deletion of LAIR-1 in mice results in an increase in signaling downstream of the glycoprotein VI–FcRγ-chain and integrin αIIbβ3 in megakaryocytes because of enhanced Src family kinase activity. Conclusions— Findings from this study demonstrate that ablation of LAIR-1 in megakaryocytes leads to increased Src family kinase activity and downstream signaling in response to collagen that is transmitted to platelets, rendering them hyper-reactive specifically to agonists that signal through Syk tyrosine kinases, but not to G-protein–coupled receptors.


2019 ◽  
Author(s):  
Kristina A.M. Arendt ◽  
Giannoula Ntaliarda ◽  
Vasileios Armenis ◽  
Danai Kati ◽  
Christin Henning ◽  
...  

ABSTRACTKRAS inhibitors perform inferior to other targeted drugs. To investigate a possible reason for this, we treated cancer cells with KRAS inhibitors deltarasin (targeting phosphodiesterase-δ), cysmethynil (targeting isoprenylcysteine carboxylmethyltransferase), and AA12 (targeting KRASG12C), and silenced/overexpressed mutant KRAS using custom vectors. We show that KRAS-mutant tumor cells exclusively respond to KRAS blockade in vivo, because the oncogene co-opts host myeloid cells via a C-C-motif chemokine ligand 2/interleukin-1β signaling loop for sustained tumorigenicity. Indeed, KRAS-mutant tumors did not respond to deltarasin in Ccr2 and Il1b gene-deficient mice, but were deltarasin-sensitive in wild-type and Ccr2-deficient mice adoptively transplanted with wild-type murine bone marrow. A KRAS-dependent pro-inflammatory transcriptome was prominent in human cancers with high KRAS mutation prevalence and predicted poor survival. Hence the findings support that in vitro systems are suboptimal for anti-KRAS drug screens, and suggest that interleukin-1β blockade might be specific for KRAS-mutant cancers.


1987 ◽  
Author(s):  
F A Ofosu ◽  
G J Modi ◽  
M A Blajchman ◽  
M R Buchanan ◽  
E A Johnson

Studies have shown that dermatan sulfate (DS), heparan sulfate (HS) and chondroitin-4-sulfate (C4S), have antithrombotic properties. The sulfate to carboxylate ratios of these three glycosaminoglycans (GAGs) are approximately half that of heparin (HEP) and the gravimetric dose of each of the three GAGs required to achieve antithrombotic effects in vivo comparable to HEP can be 10 times or more than that of HEPT Since antithrombotic effects depend on the ability of a GAG to catalyse thrombin inhibition and/or to inhibit prothrombin activation, we determined the relationship between the extent of sulfation of various GAGs and their effects on these two reactions in normal plasma. In addition to the three GAGs, DS, HS and C4S were resulfated in vitro to yield DS-S, HS-S and C4S-S, each with a sulfate to carboxylate ratio comparable to that of heparin. As summarized below, increased sulfation improved the ability of a GAG to catalyse thrombin inhibition and to inhibit prothrombin activation. Increasing the degree of sulfation primarily improved the ability of a GAG to accelerate the inhibition of thrombin by heparin cofactor II. The degree of sulfation, therefore, appears to be an important functional attribute of the ability of vessel wall GAGs to regulate the formation and activity of thrombin in plasma.


2001 ◽  
Vol 280 (2) ◽  
pp. G291-G297 ◽  
Author(s):  
Cameron W. Lush ◽  
Gediminas Cepinskas ◽  
William J. Sibbald ◽  
Peter R. Kvietys

In vitro, nitric oxide (NO) decreases leukocyte adhesion to endothelium by attenuating endothelial adhesion molecule expression. In vivo, lipopolysaccharide-induced leukocyte rolling and adhesion was greater in inducible NO synthase (iNOS)−/− mice than in wild-type mice. The objective of this study was to assess E- and P-selectin expression in the microvasculature of iNOS−/− and wild-type mice subjected to acute peritonitis by cecal ligation and perforation (CLP). E- and P-selectin expression were increased in various organs within the peritoneum of wild-type animals after CLP. This CLP-induced upregulation of E- and P-selectin was substantially reduced in iNOS−/− mice. Tissue myeloperoxidase (MPO) activity was increased to a greater extent in the gut of wild-type than in iNOS−/− mice subjected to CLP. In the lung, the reduced expression of E-selectin in iNOS−/− mice was not associated with a decrease in MPO. Our findings indicate that NO derived from iNOS plays an important role in sepsis-induced increase in selectin expression in the systemic and pulmonary circulation. However, in iNOS−/− mice, sepsis-induced leukocyte accumulation is affected in the gut but not in the lungs.


1997 ◽  
Vol 186 (11) ◽  
pp. 1853-1863 ◽  
Author(s):  
Tao Tang ◽  
Alexander Rosenkranz ◽  
Karel J.M. Assmann ◽  
Michael J. Goodman ◽  
Jose-Carlos Gutierrez-Ramos ◽  
...  

Mac-1 (αmβ2), a leukocyte adhesion receptor, has been shown in vitro to functionally interact with Fcγ receptors to facilitate immune complex (IC)–stimulated polymorphonuclear neutrophil (PMN) functions. To investigate the relevance of Mac-1–FcγR interactions in IC-mediated injury in vivo, we induced a model of Fc-dependent anti–glomerular basement membrane (GBM) nephritis in wild-type and Mac-1–deficient mice by the intravenous injection of anti-GBM antibody. The initial glomerular PMN accumulation was equivalent in Mac-1 null and wild-type mice, but thereafter increased in wild-type and decreased in mutant mice. The absence of Mac-1 interactions with obvious ligands, intercellular adhesion molecule 1 (ICAM-1), and C3 complement, is not responsible for the decrease in neutrophil accumulation in Mac-1– deficient mice since glomerular PMN accumulation in mice deficient in these ligands was comparable to those in wild-type mice. In vitro studies showed that spreading of Mac-1–null PMNs to IC-coated dishes was equivalent to that of wild-type PMNs at 5–12 min but was markedly reduced thereafter, and was associated with an inability of mutant neutrophils to redistribute filamentous actin. This suggests that in vivo, Mac-1 is not required for the initiation of Fc-mediated PMN recruitment but that Mac-1–FcγR interactions are required for filamentous actin reorganization leading to sustained PMN adhesion, and this represents the first demonstration of the relevance of Mac-1–FcγR interactions in vivo. PMN-dependent proteinuria, maximal in wild-type mice at 8 h, was absent in Mac-1 mutant mice at all time points. Complement C3–deficient mice also had significantly decreased proteinuria compared to wild-type mice. Since Mac-1 on PMNs is the principal ligand for ic3b, an absence of Mac-1 interaction with C3 probably contributed to the abrogation of proteinuria in Mac-1–null mice.


Sign in / Sign up

Export Citation Format

Share Document