Platelet protein disulfide isomerase is localized in the dense tubular system and does not become surface expressed after activation

Blood ◽  
2009 ◽  
Vol 114 (21) ◽  
pp. 4738-4740 ◽  
Author(s):  
Hezder E. van Nispen tot Pannerden ◽  
Suzanne M. van Dijk ◽  
Vivian Du ◽  
Harry F. G. Heijnen

Abstract Evidence is accumulating that circulating tissue factor (TF) contributes to the initiation of coagulation and the formation of fibrin. The majority of circulating TF is cryptic, and it has been suggested that close vicinity with anionic phospholipids on the cell surface increases the active conformation of TF. Two recent papers have shown that encryption of TF and initiation of coagulation are facilitated by the enzyme protein disulfide isomerase (PDI), possibly on the surface of activated platelets or endothelial cells. In this brief report, we demonstrate that the majority of PDI in platelets is intracellular where it is exclusively located in the dense tubular system. On activation, PDI remains confined to the intracellular stores of the dense tubular system and is neither released nor targeted to the cell surface. Similar results were obtained in endothelium where PDI remains exclusively localized in the endoplasmic reticulum, both at steady state and after thrombin stimulation.

Blood ◽  
1992 ◽  
Vol 79 (9) ◽  
pp. 2226-2228 ◽  
Author(s):  
K Chen ◽  
Y Lin ◽  
TC Detwiler

Abstract The release of protein disulfide isomerase by activated platelets was hypothesized on the basis of reported intermolecular and intramolecular thiol-disulfide exchange and disulfide reduction involving released thrombospondin in the supernatant solution of activated platelets (Danishefsky, Alexander, Detwiler: Biochemistry, 23:4984, 1984; Speziale, Detwiler: J Biol Chem, 265:17859, 1990; Speziale, Detwiler: Arch Biochem Biophys 286:546, 1991). Protein disulfide isomerase activity, measured by catalysis of the renaturation of ribonuclease inactivated by randomization of disulfide bonds, was detected in the supernatant solution after platelet activation. The activity was inhibited by peptides known to inhibit protein disulfide isomerase; the peptides also inhibited formation of disulfide-linked thrombospondin- thrombin complexes. The reaction catalyzed by the supernatant solution showed a pH dependence distinct from that of the uncatalyzed reaction. The activity was excluded by a 50-Kd dialysis membrane, and it was eluted in the void volume of a gel-filtration column, indicating that it was associated with a macromolecule. The activity was not removed by centrifugation at 100,000 g for 150 minutes indicating that it was not associated with membrane microvesicles. Possible functions for the release of protein disulfide isomerase by activated platelets are discussed.


Blood ◽  
2013 ◽  
Vol 122 (6) ◽  
pp. 1052-1061 ◽  
Author(s):  
Kyungho Kim ◽  
Eunsil Hahm ◽  
Jing Li ◽  
Lisa-Marie Holbrook ◽  
Parvathy Sasikumar ◽  
...  

Key Points Platelet PDI regulates αIIbβ3 integrin activation without affecting platelet activation and inside-out integrin signaling. Platelet PDI is essential for platelet accumulation but not for fibrin generation and hemostasis in mice.


2006 ◽  
Vol 81 (5) ◽  
pp. 2328-2339 ◽  
Author(s):  
Surbhi Jain ◽  
Lori W. McGinnes ◽  
Trudy G. Morrison

ABSTRACT Newcastle disease virus (NDV), an avian paramyxovirus, initiates infection with attachment of the viral hemagglutinin-neuraminidase (HN) protein to sialic acid-containing receptors, followed by fusion of viral and cell membranes, which is mediated by the fusion (F) protein. Like all class 1 viral fusion proteins, the paramyxovirus F protein is thought to undergo dramatic conformational changes upon activation. How the F protein accomplishes extensive conformational rearrangements is unclear. Since several viral fusion proteins undergo disulfide bond rearrangement during entry, we asked if similar rearrangements occur in NDV proteins during entry. We found that inhibitors of cell surface thiol/disulfide isomerase activity—5′5-dithio-bis(2-nitrobenzoic acid) (DTNB), bacitracin, and anti-protein disulfide isomerase antibody—inhibited cell-cell fusion and virus entry but had no effect on cell viability, glycoprotein surface expression, or HN protein attachment or neuraminidase activities. These inhibitors altered the conformation of surface-expressed F protein, as detected by conformation-sensitive antibodies. Using biotin maleimide (MPB), a reagent that binds to free thiols, free thiols were detected on surface-expressed F protein, but not HN protein. The inhibitors DTNB and bacitracin blocked the detection of these free thiols. Furthermore, MPB binding inhibited cell-cell fusion. Taken together, our results suggest that one or several disulfide bonds in cell surface F protein are reduced by the protein disulfide isomerase family of isomerases and that F protein exists as a mixture of oxidized and reduced forms. In the presence of HN protein, only the reduced form may proceed to refold into additional intermediates, leading to the fusion of membranes.


Biochemistry ◽  
1996 ◽  
Vol 35 (47) ◽  
pp. 14800-14805 ◽  
Author(s):  
Jacques Couët ◽  
Simon de Bernard ◽  
Hugues Loosfelt ◽  
Bertrand Saunier ◽  
Edwin Milgrom ◽  
...  

2020 ◽  
Author(s):  
Eric Greve ◽  
Sergey Lindeman ◽  
Chris Dockendorff

The enzyme protein disulfide isomerase (PDI) is essential for the correct folding of proteins and the activation of certain cell surface receptors, and is a promising target for the treatment of cancer and thrombotic conditions. A previous high-throughput screen identified the commercial compound STK076545 as a promising PDI inhibitor. To confirm its activity and support further biological studies, a resynthesis was pursued of the reported b-keto-amide with an N-alkylated pyridone at the a-position. Numerous conventional approaches were complicated by undesired fragmentations or rearrangements. However, a successful 5-step synthetic route was achieved using an aldol reaction with an a-pyridone allyl ester as a key step. An X-ray crystal structure of the final compound confirmed that the reported structure of STK076545 was achieved, however its lack of PDI activity and inconsistent spectral data suggest that the commercial structure was misassigned.


Sign in / Sign up

Export Citation Format

Share Document