In vivo cellular imaging pinpoints the role of reactive oxygen species in the early steps of adult hematopoietic reconstitution

Blood ◽  
2010 ◽  
Vol 115 (3) ◽  
pp. 443-452 ◽  
Author(s):  
Daniel Lewandowski ◽  
Vilma Barroca ◽  
Frédéric Ducongé ◽  
Jan Bayer ◽  
Jeanne Tran Van Nhieu ◽  
...  

Abstract Few techniques are available to characterize in vivo the early cellular dynamics of long-term reconstitution of hematopoiesis after transplantation of hematopoietic stem cells (HSCs) after lethal irradiation. Using a fiber-optic imaging system, we track the early steps of in vivo recruitment and proliferation of Lin−Sca-1+c-Kit+CD34− (LSKCD34−) HSCs highly enriched in HSCs and transplanted into lethally irradiated mice. Recruitment of the transplanted LSKCD34− hematopoietic cells first occurs in the femoral head and is continuous during 24 hours. Quantification of the fluorescence emitted by the transplanted hematopoietic cells shows that proliferation of LSKCD34− hematopoietic cells in the femoral head was potent 3 days after transplantation. Using a development of this fiber-optic imaging system, we show that the transplanted LSKCD34− hematopoietic cells are associated with vascularized structures as early as 5 hours after transplantation. This early association is dependent on reactive oxygen species (ROS) partly through the regulation of vascular cell adhesion molecule-1 expression on endothelial cells and is followed by a ROS-dependent proliferation of LSKCD34− hematopoietic cells. This new in vivo imaging technique permits the observation of the early steps of hematopoietic reconstitution by HSCs in long bones and shows a new role of ROS in the recruitment of HSCs by bone marrow endothelial cells.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2454-2454
Author(s):  
Daniel Lewandowski ◽  
Vilma Barroca ◽  
Frédéric Ducongé ◽  
Bertrand Tavitian ◽  
Paul-Henri Roméo

Abstract Progress in regenerative medicine will be greatly helped by the characterization of the in vivo processes that lead to tissue reconstitution by adult somatic stem cells. Many major advances have been achieved in the purification and the ex vivo amplification of the adult somatic stem cells, but very few data are available on the pre-requisites that will enhance their in vivo biological activities. The best studied model of tissue reconstitution is the long-term reconstitution of hematopoiesis after transplantation of adult hematopoietic stem cells (HSCs) following lethal irradiation and imaging strategies are amongst the most promising techniques to reveal the in vivo cellular dynamics of this process. Here, we present a new imaging technique to track labeled cells in living animals and we show that this technique can visualize the hematopoietic reconstitution within the femoral cavity after lethal irradiation. We use a fibered in vivo confocal fluorescence imaging system that can navigate inside the femoral cavity from the knee to the femoral head. Imaging is done in living mice, does not alter their viability, does not interfere with hematopoietic reconstitution and can easily be used to follow the temporal dynamics of tissue reconstitution in the mouse at a cellular level. Using this imaging system, we track the temporal and topological cellular dynamics of in vivo engraftment and proliferation of Lin-Sca+c−Kit+CD34− cells (LSKCD34−), enriched in HSCs, transplanted into lethally irradiated mice. Homing and engraftment of LSKCD34− hematopoietic cells first occur in the two femoral epiphyses where these cells are found associated with vascularized structures as early as one hour after transplantation. Reactive oxygen species (ROS) regulate the initial homing of transplanted HSCs through the modulation of VCAM-1 expression by the endothelial cells and the proliferation of transplanted HSCs.


2008 ◽  
Vol 180 (1) ◽  
pp. 101-112 ◽  
Author(s):  
Michael Schleicher ◽  
Benjamin R. Shepherd ◽  
Yajaira Suarez ◽  
Carlos Fernandez-Hernando ◽  
Jun Yu ◽  
...  

Prohibitin 1 (PHB1) is a highly conserved protein that is mainly localized to the inner mitochondrial membrane and has been implicated in regulating mitochondrial function in yeast. Because mitochondria are emerging as an important regulator of vascular homeostasis, we examined PHB1 function in endothelial cells. PHB1 is highly expressed in the vascular system and knockdown of PHB1 in endothelial cells increases mitochondrial production of reactive oxygen species via inhibition of complex I, which results in cellular senescence. As a direct consequence, both Akt and Rac1 are hyperactivated, leading to cytoskeletal rearrangements and decreased endothelial cell motility, e.g., migration and tube formation. This is also reflected in an in vivo angiogenesis assay, where silencing of PHB1 blocks the formation of functional blood vessels. Collectively, our results provide evidence that PHB1 is important for mitochondrial function and prevents reactive oxygen species–induced senescence and thereby maintains the angiogenic capacity of endothelial cells.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Wuyang Huang ◽  
Yunming Zhu ◽  
Chunyang Li ◽  
Zhongquan Sui ◽  
Weihong Min

The objective of this research was to survey the antioxidant functional role of the main anthocyanins of blueberries in endothelial cells. Changes on the reactive oxygen species (ROS), xanthine oxidase-1 (XO-1), superoxide dismutase (SOD), and heme oxygenase-1 (HO-1) in cells of malvidin and the two glycosides were investigated. The results showed that these anthocyanins decreased the levels of ROS and XO-1 but increased the levels of SOD and HO-1. Glycosides improved the antioxidant capacity of malvidin to a great extent. The changes in the antioxidant properties of malvidin-3-glucoside were more pronounced than malvidin-3-galactoside. Variation in levels of malvidin-3-glucoside and malvidin-3-galactoside had a significant impact on antioxidant properties to different extents. It indicates that blueberries are a good resource of anthocyanins, which can protect cells from oxidative deterioration and use blueberry as a potential functional food to prevent diseases related to oxidative stress.


2000 ◽  
Vol 279 (2) ◽  
pp. L302-L311 ◽  
Author(s):  
Andrea L. True ◽  
Arshad Rahman ◽  
Asrar B. Malik

Reactive oxygen species have been proposed to signal the activation of the transcription factor nuclear factor (NF)-κB in response to tumor necrosis factor (TNF)-α challenge. In the present study, we investigated the effects of H2O2 and TNF-α in mediating activation of NF-κB and transcription of the intercellular adhesion molecule (ICAM)-1 gene. Northern blot analysis showed that TNF-α exposure of human dermal microvascular endothelial cells (HMEC-1) induced marked increases in ICAM-1 mRNA and cell surface protein expression. In contrast, H2O2 added at subcytolytic concentrations failed to activate ICAM-1 expression. Challenge with H2O2 also failed to induce NF-κB-driven reporter gene expression in the transduced HMEC-1 cells, whereas TNF-α increased the NF-κB-driven gene expression ∼10-fold. Gel supershift assay revealed the presence of p65 (Rel A), p50, and c-Rel in both H2O2- and TNF-α-induced NF-κB complexes bound to the ICAM-1 promoter, with the binding of the p65 subunit being the most prominent. In vivo phosphorylation studies, however, showed that TNF-α exposure induced marked phosphorylation of NF-κB p65 in HMEC-1 cells, whereas H2O2 had no effect. These results suggest that reactive oxygen species generation in endothelial cells mediates the binding of NF-κB to nuclear DNA, whereas TNF-α generates additional signals that induce phosphorylation of the bound NF-κB p65 and confer transcriptional competency to NF-κB.


2009 ◽  
Vol 11 (4) ◽  
pp. 747-764 ◽  
Author(s):  
Srikanth Pendyala ◽  
Irina A Gorshkova ◽  
Peter V. Usatyuk ◽  
Donghong He ◽  
Arjun Pennathur ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document