scholarly journals The carboxyterminal EF domain of erythroid α-spectrin is necessary for optimal spectrin-actin binding

Blood ◽  
2010 ◽  
Vol 116 (14) ◽  
pp. 2600-2607 ◽  
Author(s):  
Catherine Korsgren ◽  
Samuel E. Lux

Abstract Spectrin and protein 4.1R crosslink F-actin, forming the membrane skeleton. Actin and 4.1R bind to one end of β-spectrin. The adjacent end of α-spectrin, called the EF domain, is calmodulin-like, with calcium-dependent and calcium-independent EF hands. The severely anemic sph1J/sph1J mouse has very fragile red cells and lacks the last 13 amino acids in the EF domain, implying that the domain is critical for skeletal integrity. To test this, we constructed a minispectrin heterodimer from the actin-binding domain, the EF domain, and 4 adjacent spectrin repeats in each chain. The minispectrin bound to F-actin in the presence of native human protein 4.1R. Formation of the spectrin-actin-4.1R complex was markedly attenuated when the minispectrin contained the shortened sph1J α-spectrin. The α-spectrin deletion did not interfere with spectrin heterodimer assembly or 4.1R binding but abolished the binary interaction between spectrin and F-actin. The data show that the α-spectrin EF domain greatly amplifies the function of the β-spectrin actin-binding domain (ABD) in forming the spectrin-actin-4.1R complex. A model, based on the structure of α-actinin, suggests that the EF domain modulates the function of the ABD and that the C-terminal EF hands (EF34) may bind to the linker that connects the ABD to the first spectrin repeat.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 810-810 ◽  
Author(s):  
Catherine Korsgren ◽  
Connie S. Birkenmeier ◽  
Jane E. Barker ◽  
Luanne L. Peters ◽  
Samuel E. Lux

Abstract The red blood cell (RBC) membrane skeleton is composed principally of short F-actin filaments crosslinked by α2β2-spectrin tetramers with the assistance of protein 4.1R. Actin and 4.1R bind to the actin-binding domain (βABD) at the N-terminus of the spectrin β-chain. The adjacent, C-terminal end of α-spectrin, contains a calmodulin-like domain (αCML, aa 2262–2418) that is also called the EF hand domain and is thought to be inert or vestigial. However, the sph1J/sph1J mouse, which has severe hereditary spherocytosis and unstable RBC membranes, makes a mutant α-spectrin that lacks the last 13 amino acids (αCMLΔC13), showing that the domain has some important function. To investigate this function we “fished” for interacting proteins using glutathione-S-transferase (GST)-fused to the CML domain—either the wildtype (αGST-CML) or sph1J (αGST-CMLΔC13). αGST-CML retrieved protein 4.2 from a 2M Tris HCl extract of spectrin-actin depleted human RBC membranes. Protein 4.2 bound αGST-CML with high affinity (Kd = 2.7 x 10−7M) but did not bind αGST-CMLΔC13. Binding was abolished by 1 mM Ca2+, which converts the CML domain to the liganded conformation. The binding site on protein 4.2 localized, at least partly, to amino acids 411–492. Because red cells lacking protein 4.2 are not as severely affected as sph1J/sph1J RBCs, we also tested the effect of the αCMLΔC13 mutation on spectrin-actin binding. A minispectrin was prepared containing the actin-binding domain plus the first four spectrin repeats of the β-chain, combined with the CML domain (±ΔC13) and the last four repeats of the α-chain. The normal and mutant minispectrins were incubated with protein 4.1R, F-actin, or both proteins. The results were striking. The minispectrin containing the normal CML domain bound actin in the presence of protein 4.1R, but the minispectrin containing the mutant CML domain did not. Similarly, the mutant minispectrin was defective in its ability to bind 125I-4.1R in the presence of a constant amount of F-actin. However, the mutation did not affect binding of the minispectrin to protein 4.1R in the absence of actin. We have not yet tested whether protein 4.2 or Ca2+ modulate the effects of the CML domain on spectrin-actin binding. In summary, these experiments clearly show that the calmodulin-like (EF hand) domain of α-spectrin, which was previously considered inert, binds protein 4.2 and also contributes to spectrin-actin binding in the presence of protein 4.1R. Further experiments will be needed to determine whether the CML domain binds actin directly or strengthens the binding of the adjacent actin-binding domain.


2001 ◽  
Vol 154 (4) ◽  
pp. 691-698 ◽  
Author(s):  
Conrad L. Leung ◽  
Min Zheng ◽  
Susan M. Prater ◽  
Ronald K.H. Liem

Bullous pemphigoid antigen 1 (BPAG1) is a member of the plakin family with cytoskeletal linker properties. Mutations in BPAG1 cause sensory neuron degeneration and skin fragility in mice. We have analyzed the BPAG1 locus in detail and found that it encodes different interaction domains that are combined in tissue-specific manners. These domains include an actin-binding domain (ABD), a plakin domain, a coiled coil (CC) rod domain, two different potential intermediate filament–binding domains (IFBDs), a spectrin repeat (SR)-containing rod domain, and a microtubule-binding domain (MTBD). There are at least three major forms of BPAG1: BPAG1-e (302 kD), BPAG1-a (615 kD), and BPAG1-b (834 kD). BPAG1-e has been described previously and consists of the plakin domain, the CC rod domain, and the first IFBD. It is the primary epidermal BPAG1 isoform, and its absence that is the likely cause of skin fragility in mutant mice. BPAG1-a is the major isoform in the nervous system and a homologue of the microtubule actin cross-linking factor, MACF. BPAG1-a is composed of the ABD, the plakin domain, the SR-containing rod domain, and the MTBD. The absence of BPAG1-a is the likely cause of sensory neurodegeneration in mutant mice. BPAG1-b is highly expressed in muscles, and has extra exons encoding a second IFBD between the plakin and SR-containing rod domains of BPAG1-a.


Blood ◽  
2000 ◽  
Vol 95 (2) ◽  
pp. 692-699 ◽  
Author(s):  
Sherry L. Gee ◽  
Kazuko Aoyagi ◽  
Robert Lersch ◽  
Victor Hou ◽  
Michael Wu ◽  
...  

Alternative splicing plays a major role in regulating tissue-specific expression of cytoskeletal protein 4.1R isoforms. In particular, expression of the protein's functionally critical spectrin-actin binding domain, essential for maintenance of red cell membrane mechanical properties, is governed by a developmentally regulated splicing switch involving alternative exon 16. Using a model 3-exon 4.1R pre–messenger RNA (pre-mRNA), we explored the sequence requirements for excision of the introns flanking exon 16. These studies revealed that splicing of this alternative exon occurs preferentially in an ordered fashion. The first step is excision of the downstream intron to join exons 16 and 17, followed by excision of the upstream intron. Constructs designed to test the converse pathway were spliced less efficiently and with less fidelity, in part due to activation of a cryptic 5′ splice site in exon 16. This downstream-first model for ordered splicing is consistent with the hypothesis that regulated alternative splicing requires cooperation between multiple exonic and/or intronic regulatory elements whose spatial organization is critical for recruitment of appropriate splicing factors. Our results predict that exon 16 splicing is regulated at the first step—excision of the downstream intron—and that cells unable to catalyze this step will exhibit exon 16 skipping. In cells that include exon 16, adherence to an ordered pathway is important for efficient and accurate production of mature 4.1R mRNA encoding an intact spectrin-actin binding domain.


Author(s):  
Barbara Addario ◽  
Lars Backman

AbstractEntamoeba histolytica, a major agent of human amoebiasis, expresses two distinct forms of α-actinin, a ubiquitous actin-binding protein that is present in most eukaryotic organisms. In contrast to all metazoan α-actinins, in both isoforms the intervening rod domain that connects the N-terminal actin-binding domain with the C-terminal EF-hands is much shorter. It is suggested that these α-actinins may be involved in amoeboid motility and phagocytosis, so we cloned and characterised each domain of one of these α-actinins to better understand their functional role. The results clearly showed that the domains have properties very similar to those of conventional α-actinins.


2006 ◽  
Vol 17 (11) ◽  
pp. 4720-4735 ◽  
Author(s):  
Alistair N. Hume ◽  
Abul K. Tarafder ◽  
José S. Ramalho ◽  
Elena V. Sviderskaya ◽  
Miguel C. Seabra

Melanophilin (Mlph) regulates retention of melanosomes at the peripheral actin cytoskeleton of melanocytes, a process essential for normal mammalian pigmentation. Mlph is proposed to be a modular protein binding the melanosome-associated protein Rab27a, Myosin Va (MyoVa), actin, and microtubule end-binding protein (EB1), via distinct N-terminal Rab27a-binding domain (R27BD), medial MyoVa-binding domain (MBD), and C-terminal actin-binding domain (ABD), respectively. We developed a novel melanosome transport assay using a Mlph-null cell line to study formation of the active Rab27a:Mlph:MyoVa complex. Recruitment of MyoVa to melanosomes correlated with rescue of melanosome transport and required intact R27BD together with MBD exon F–binding region (EFBD) and unexpectedly a potential coiled-coil forming sequence within ABD. In vitro binding studies indicate that the coiled-coil region enhances binding of MyoVa by Mlph MBD. Other regions of Mlph reported to interact with MyoVa globular tail, actin, or EB1 are not essential for melanosome transport rescue. The strict correlation between melanosomal MyoVa recruitment and rescue of melanosome distribution suggests that stable interaction with Mlph and MyoVa activation are nondissociable events. Our results highlight the importance of the coiled-coil region together with R27BD and EFBD regions of Mlph in the formation of the active melanosomal Rab27a-Mlph-MyoVa complex.


1999 ◽  
Vol 147 (6) ◽  
pp. 1275-1286 ◽  
Author(s):  
Conrad L. Leung ◽  
Dongming Sun ◽  
Min Zheng ◽  
David R. Knowles ◽  
Ronald K.H. Liem

We cloned and characterized a full-length cDNA of mouse actin cross-linking family 7 (mACF7) by sequential rapid amplification of cDNA ends–PCR. The completed mACF7 cDNA is 17 kb and codes for a 608-kD protein. The closest relative of mACF7 is the Drosophila protein Kakapo, which shares similar architecture with mACF7. mACF7 contains a putative actin-binding domain and a plakin-like domain that are highly homologous to dystonin (BPAG1-n) at its NH2 terminus. However, unlike dystonin, mACF7 does not contain a coiled–coil rod domain; instead, the rod domain of mACF7 is made up of 23 dystrophin-like spectrin repeats. At its COOH terminus, mACF7 contains two putative EF-hand calcium-binding motifs and a segment homologous to the growth arrest–specific protein, Gas2. In this paper, we demonstrate that the NH2-terminal actin-binding domain of mACF7 is functional both in vivo and in vitro. More importantly, we found that the COOH-terminal domain of mACF7 interacts with and stabilizes microtubules. In transfected cells full-length mACF7 can associate not only with actin but also with microtubules. Hence, we suggest a modified name: MACF (microtubule actin cross-linking factor). The properties of MACF are consistent with the observation that mutations in kakapo cause disorganization of microtubules in epidermal muscle attachment cells and some sensory neurons.


2013 ◽  
Vol 24 (23) ◽  
pp. 3710-3720 ◽  
Author(s):  
Scott D. Hansen ◽  
Adam V. Kwiatkowski ◽  
Chung-Yueh Ouyang ◽  
HongJun Liu ◽  
Sabine Pokutta ◽  
...  

The actin-binding protein αE-catenin may contribute to transitions between cell migration and cell–cell adhesion that depend on remodeling the actin cytoskeleton, but the underlying mechanisms are unknown. We show that the αE-catenin actin-binding domain (ABD) binds cooperatively to individual actin filaments and that binding is accompanied by a conformational change in the actin protomer that affects filament structure. αE-catenin ABD binding limits barbed-end growth, especially in actin filament bundles. αE-catenin ABD inhibits actin filament branching by the Arp2/3 complex and severing by cofilin, both of which contact regions of the actin protomer that are structurally altered by αE-catenin ABD binding. In epithelial cells, there is little correlation between the distribution of αE-catenin and the Arp2/3 complex at developing cell–cell contacts. Our results indicate that αE-catenin binding to filamentous actin favors assembly of unbranched filament bundles that are protected from severing over more dynamic, branched filament arrays.


Sign in / Sign up

Export Citation Format

Share Document