Opposing roles of polycomb repressive complexes in hematopoietic stem and progenitor cells

Blood ◽  
2010 ◽  
Vol 116 (5) ◽  
pp. 731-739 ◽  
Author(s):  
Ian J. Majewski ◽  
Matthew E. Ritchie ◽  
Belinda Phipson ◽  
Jason Corbin ◽  
Miha Pakusch ◽  
...  

Polycomb group (PcG) proteins are transcriptional repressors with a central role in the establishment and maintenance of gene expression patterns during development. We have investigated the role of polycomb repressive complexes (PRCs) in hematopoietic stem cells (HSCs) and progenitor populations. We show that mice with loss of function mutations in PRC2 components display enhanced HSC/progenitor population activity, whereas mutations that disrupt PRC1 or pleiohomeotic repressive complex are associated with HSC/progenitor cell defects. Because the hierarchical model of PRC action would predict synergistic effects of PRC1 and PRC2 mutation, these opposing effects suggest this model does not hold true in HSC/progenitor cells. To investigate the molecular targets of each complex in HSC/progenitor cells, we measured genome-wide expression changes associated with PRC deficiency, and identified transcriptional networks that are differentially regulated by PRC1 and PRC2. These studies provide new insights into the mechanistic interplay between distinct PRCs and have important implications for approaching PcG proteins as therapeutic targets.

2011 ◽  
Vol 39 (6) ◽  
pp. 617-628 ◽  
Author(s):  
Thomas Walenda ◽  
Gudrun Bokermann ◽  
Mónica S. Ventura Ferreira ◽  
Daniela M. Piroth ◽  
Thomas Hieronymus ◽  
...  

Blood ◽  
2012 ◽  
Vol 119 (18) ◽  
pp. 4152-4161 ◽  
Author(s):  
Katharina Ross ◽  
Anna K. Sedello ◽  
Gabriele Putz Todd ◽  
Maciej Paszkowski-Rogacz ◽  
Alexander W. Bird ◽  
...  

AbstractThe transcription factor runt-related transcription factor 1 (Runx1) is essential for the establishment of definitive hematopoiesis during embryonic development. In adult blood homeostasis, Runx1 plays a pivotal role in the maturation of lymphocytes and megakaryocytes. Furthermore, Runx1 is required for the regulation of hematopoietic stem and progenitor cells. However, how Runx1 orchestrates self-renewal and lineage choices in combination with other factors is not well understood. In the present study, we describe a genome-scale RNA interference screen to detect genes that cooperate with Runx1 in regulating hematopoietic stem and progenitor cells. We identify the polycomb group protein Pcgf1 as an epigenetic regulator involved in hematopoietic cell differentiation and show that simultaneous depletion of Runx1 and Pcgf1 allows sustained self-renewal while blocking differentiation of lineage marker–negative cells in vitro. We found an up-regulation of HoxA cluster genes on Pcgf1 knock-down that possibly accounts for the increase in self-renewal. Moreover, our data suggest that cells lacking both Runx1 and Pcgf1 are blocked at an early progenitor stage, indicating that a concerted action of the transcription factor Runx1, together with the epigenetic repressor Pcgf1, is necessary for terminal differentiation. The results of the present study uncover a link between transcriptional and epigenetic regulation that is required for hematopoietic differentiation.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2493-2493
Author(s):  
Isabell Schulze ◽  
Petra Tschanter ◽  
Christian Rohde ◽  
Annika Krause ◽  
Heinz Linhart ◽  
...  

Abstract DNA methyltransferases (DNMT) play an important role in regulation of DNA methylation and mutations of DNMT3A are frequently found in AML. In previous studies using a tetracycline-inducible DNMT3B mouse model, we could show that overexpression of DNMT3B affected leukemia initiation and maintenance upon retroviral transduction and serial transplantation of hematopoietic stem and progenitor cells with MSCV-MLL-AF9-GFP and MSCV-cmyc-bcl2-mcherry oncogenic vectors, respectively. Sublethally irradiated recipient mice of DNMT3B overexpressing MLL-AF9 and cmyc/bcl2 leukemic cells developed leukemia with a prolonged latency when compared to recipients of wildtype cells. We performed serial transplantation assays of MLL-AF9 leukemic stem cells, which were sorted for high expression of ckit. The life-prolonging effect of DNMT3B expression was stem cell-specific, as the potential to initiate leukemia was maintained upon serial retransplantation and recipients of DNMT3B overexpressing leukemic stem cells also died significantly later in secondary (p<0.001) and tertiary transplantations (p<0.001). Analysis of global DNA methylation levels in MLL-AF9 ckit+ leukemic stem cells and cmyc/bcl2 leukemic cells via Reduced Representation Bisulfite Sequencing (RRBS) revealed a strong hypermethylation in DNMT3B overexpressing cells, independent of the oncogene used for leukemia induction. Differentially methylated CpG sites were defined as CpGs with at least 20% methylation difference between wildtype and DNMT3B overexpressing samples. Hypermethylation in MLL-AF9 leukemic cells directly correlated with observed hypermethylation in cmyc/bcl2 leukemic cells and inversely correlated with hypomethylation in cmyc/bcl2 cells, indicating that in both leukemias, the same sites are prone to DNMT3B induced DNA methylation. To investigate, if these changes in DNA methylation resulted in different gene expression patterns, we performed microarray analysis of the same MLL-AF9 leukemic wildtype and DNMT3B expressing samples which were also used for DNA methylation analysis. In microarray analyses, we could identify several genes differentially expressed in DNMT3B overexpressing cells when compared to wildtype samples. Interestingly, changes in expression levels could not be attributed to differential DNA methylation in promoter regions. Instead, hypermethylation in exons and gene bodies resulted in downregulation of the respective genes, whereas genes with hypomethylated exons and gene bodies showed higher expression levels. Genes downregulated in DNMT3B overexpressing cells, were mainly cancer-associated genes, which are known to have functions in cellular growth and proliferation, as well as in the hematopoietic system development and maintenance. Gene Set Enrichment Analysis (GSEA) of wildtype cells revealed a strong enrichment of genes upregulated in different stages of hematopoietic stem and progenitor cells as well as in leukemic stem cells, whereas DNMT3B overexpressing samples were enriched in genes which have been shown to be downregulated in hematopoietic and leukemic stem cells and upregulated in mature hematopoietic cells. This strengthens our hypothesis that DNMT3B induced DNA methylation mainly influences the phenotype and function of hematopoietic stem cells and thereby, exerts its inhibitory function on leukemia initiation and maintenance. Taken together, these findings demonstrate that DNMT3B exerts its anti-leukemic effect mainly via induction of aberrant DNA methylation in hematopoietic and leukemic stem cells, thereby changing expression patterns of genes known to be important for stem cell function. The identification of differentially expressed DNMT3B target genes could help to find promising targets for new therapeutic strategies in AML. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5048-5048
Author(s):  
Kam Tong Leung ◽  
Yorky Tsin Sik Wong ◽  
Karen Li ◽  
Kathy Yuen Yee Chan ◽  
Xiao-Bing Zhang ◽  
...  

Abstract RGS family proteins are known to negatively regulate G-protein-coupled receptor signaling through their GTPase-accelerating activity. In several types of hematopoietic cells (e.g., B lymphocytes and megakaryocytes), responses to stromal cell-derived factor-1 (SDF-1) are subjected to regulation by R4 subfamily RGS proteins. However, their expression patterns and functional roles in hematopoietic stem and progenitor cells (HSC) are poorly characterized. Here, we showed that human CD34+ HSC derived from cord blood (CB, n = 10) expressed 7 out of 10 R4 RGS proteins at mRNA level (RGS1-3, 5, 13, 16 and 18), whereas expressions of RGS4, 8 and 21 were undetectable. Exposure of CB CD34+ cells to SDF-1 significantly increased RGS1, 2, 13 and 16 expressions and decreased RGS3 and 18 expressions (P ≤ 0.0402, n = 5). Expressions of RGS1, 13 and 16 were significantly higher in bone marrow (BM, n = 10) CD34+ cells when compared to mobilized peripheral blood (MPB, n = 5) CD34+ cells (P ≤ 0.0160), while RGS3 and 18 expressions were lower in BM CD34+ cells (P ≤ 0.0471), suggesting a SDF-1- and niche-dependent regulation of RGS expressions. To investigate the potential involvement of RGS proteins in SDF-1-mediated homing-related functions, we introduced RGS overexpression constructs into CB CD34+ cells by lentiviral transduction. With >80% transduction efficiency, we showed that overexpression of RGS1, 13 and 16 but not RGS2 significantly inhibited migration of CD34+ cells to a SDF-1 gradient (P ≤ 0.0391, n = 4-5). Similarly, RGS1, 13 and 16 overexpression suppressed SDF-1-induced Akt phosphorylation (n = 2), but none of them affected SDF-1-mediated actin polymerization (n = 3). In the NOD/SCID mouse xenotransplantation model, preliminary results showed that bone marrow homing was impaired in RGS1- (16.3% reduction), RGS13- (12.7% reduction) or RGS16-overexpressing CD34+ cells (33.7% reduction). Taken together, we provided the first evidence that expressions of R4 RGS proteins are regulated by the SDF-1/CXCR4 axis in human CD34+ HSC. We also presented evidence that specific R4 RGS proteins (RGS1, 13 and 16) negatively regulate in vitro SDF-1-mediated responses and in vivo homing of CD34+ cells, suggesting that RGS proteins may serve as a feedback mechanism to regulate SDF-1/CXCR4 signaling. Strategies to inhibit RGS signaling could thus be a potential method for enhancing efficiency of HSC homing and long-term engraftment, which is particularly important in the setting of CB transplantation. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Oscar A. Peña ◽  
Alexandra Lubin ◽  
Jasmine Rowell ◽  
Yvette Hoade ◽  
Noreen Khokhar ◽  
...  

Germline loss or mutation of one copy of the transcription factor GATA2 in humans leads to a range of clinical phenotypes affecting hematopoietic, lymphatic and vascular systems. GATA2 heterozygous mice show only a limited repertoire of the features observed in humans. Zebrafish have two copies of the Gata2 gene as a result of an additional round of ancestral whole genome duplication. These genes, Gata2a and Gata2b, show distinct but overlapping expression patterns, and between them, highlight a significantly broader range of the phenotypes observed in GATA2 deficient syndromes, than each one alone. In this manuscript, we use mutants for Gata2a and Gata2b to interrogate the effects on hematopoiesis of these two ohnologs, alone and in combination, during development in order to further define the role of GATA2 in developmental hematopoiesis. We define unique roles for each ohnolog at different stages of developmental myelopoiesis and for the emergence of hematopoietic stem and progenitor cells. These effects are not additive in the haploinsufficient state suggesting a redundancy between these two genes in hematopoietic stem and progenitor cells. Rescue studies additionally support that Gata2b can compensate for the effects of Gata2a loss. Finally we show that adults with loss of combined heterozygosity show defects in the myeloid compartment consistent with GATA2 loss in humans. These results build on existing knowledge from other models of GATA2 deficiency and refine our understanding of the early developmental effects of GATA2. In addition, these studies shed light on the complexity and potential structure-function relationships as well as sub-functionalization of Gata2 genes in the zebrafish model.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4205-4205
Author(s):  
Wolf C. Prall ◽  
Akos Czibere ◽  
Franck Grall ◽  
Luiz F. Zerbini ◽  
Markus Jaeger ◽  
...  

Abstract There is a higher incidence of hematological clonal stem cell disorders in elderly persons. Age-related alterations of hematopoietic stem and progenitor cells (HSC) may represent one factor underlying this observation. However, the molecular changes related to stem cell aging are largely unknown. Therefore, we scrutinized gene expression patterns of HSC from umbilical cord blood (CB) as well as bone marrow from young (BM-Y, mean age 32,8, SD 12,4) and old (BM-O, mean age 88,8, SD 4,4) healthy donors. CD34+ HSC were isolated via immuno-magnetic separation and CD34+ purity was evaluated by FACS analysis. Thereafter we performed cDNA array analyses on a first set of samples (n=18). We found that the BCL2-interacting killer gene (BIK) and the gene encoding KU Antigen 70kD (KU70) show age-related mRNA expression levels. BIK is a proapoptotic gene and its expression was positively correlated with donor’s age, i.e. lowest in CB, 1.8-fold higher in BM-Y and 4.2-fold higher in BM-O. KU70 is a DNA repair gene and part of the DNA dependent protein kinase (DNA-PK). Its expression was negatively correlated with donor’s age showing highest expression levels in CB, 2.2-fold lower levels in BM-Y and 5.3-fold lower levels in BM-O. These findings were confirmed with a second set of samples (n=16) by means of quantitative RT-PCR. Elucidation of age-dependent molecular alteration in healthy HSC might facilitate a better understanding of hematological malignancies in elderly persons.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shufeng Luo ◽  
Huiling Lin ◽  
Lan Zhu ◽  
Hai-Tian Chen ◽  
Siqian Yang ◽  
...  

Under stress conditions, hematopoietic stem and progenitor cells (HSPCs) can translate danger signals into a plethora of cytokine signals. These cytokines, or more precisely their combination, instruct HSPCs to modify the magnitude and composition of hematopoietic output in response to the threat, but investigations into the heterogeneous cytokine expression and regulatory mechanisms are hampered by the technical difficulty of measuring cytokine levels in HSPCs at the single-cell level. Here, we optimized a flow cytometry-based method for the simultaneous assessment of multiple intracellular cytokines in HSPCs. By selecting an optimal combination of cytokine restimulation reagents, protein transport inhibitors, and culture supplements, an optimized restimulation protocol for intracellular staining was developed. Using this method, we successfully examined expression levels of granulocyte/macrophage colony-stimulating factor (GM-CSF), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in murine and human HSPC subsets under steady-state or different stress conditions. Different cytokine expression patterns were observed, suggesting distinct regulatory modes of cytokine production dependent on the HSPC subset, cytokine, disease, organ, and species. Collectively, this technical advance may help to obtain a better understanding of the nature of HSPC heterogeneity on the basis of differential cytokine production.


Sign in / Sign up

Export Citation Format

Share Document