scholarly journals Low doses of natural killer T cells provide protection from acute graft-versus-host disease via an IL-4–dependent mechanism

Blood ◽  
2011 ◽  
Vol 117 (11) ◽  
pp. 3220-3229 ◽  
Author(s):  
Dennis B. Leveson-Gower ◽  
Janelle A. Olson ◽  
Emanuela I. Sega ◽  
Richard H. Luong ◽  
Jeanette Baker ◽  
...  

Abstract CD4+ natural killer T (NKT) cells, along with CD4+CD25+ regulatory T cells (Tregs), are capable of controlling aberrant immune reactions. We explored the adoptive transfer of highly purified (> 95%) CD4+NKT cells in a murine model of allogeneic hematopoietic cell transplantation (HCT). NKT cells follow a migration and proliferation pattern similar to that of conventional T cells (Tcons), migrating initially to secondary lymphoid organs followed by infiltration of graft-versus-host disease (GVHD) target tissues. NKT cells persist for more than 100 days and do not cause significant morbidity or mortality. Doses of NKT cells as low as 1.0 × 104 cells suppress GVHD caused by 5.0 × 105 Tcons in an interleukin-4 (IL-4)–dependent mechanism. Protective doses of NKT cells minimally affect Tcon proliferation, but cause significant reductions in interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) production by donor Tcons and in skin, spleen, and gastrointestinal pathology. In addition, NKT cells do not impact the graft-versus-tumor (GVT) effect of Tcons against B-cell lymphoma-1 (BCL-1) tumors. These studies elucidate the biologic function of donor-type CD4+NKT cells in suppressing GVHD in an allogeneic transplantation setting, demonstrating clinical potential in reducing GVHD in HCT.

Blood ◽  
2001 ◽  
Vol 97 (10) ◽  
pp. 2923-2931 ◽  
Author(s):  
Jeanette Baker ◽  
Michael R. Verneris ◽  
Maki Ito ◽  
Judith A. Shizuru ◽  
Robert S. Negrin

Abstract T cells with natural killer cell phenotype and function (NKT cells) have been described in both human and murine tissues. In this study, culture conditions were developed that resulted in the expansion of CD8+ NKT cells from bone marrow, thymus, and spleen by the timed addition of interferon-γ (IFN-γ), interleukin 2 (IL-2), and anti-CD3 monoclonal antibody. After 14 to 21 days in culture, dramatic expansion of CD3+, CD8+, αβT-cell receptor+ T cells resulted with approximately 20% to 50% of the cells also expressing the NK markers NK1.1 and DX5. The CD8+ NKT cells demonstrated lytic activity against several tumor target cells with more than 90% lysis by day 14 to day 21 of culture. Cytotoxicity was observed against both syngeneic and allogeneic tumor cell targets with the greatest lytic activity by the cells expressing either NK1.1 or DX5. The expanded CD8+ NKT cells produce TH1-type cytokines with high levels of IFN-γ and tumor necrosis factor α. Expansion of the CD8+ NKT cells was independent of CD1d. Ly49 molecules were expressed on only a minority of cells. A single injection of expanded CD8+ NKT cells was capable of protecting syngeneic animals from an otherwise lethal dose of Bcl1 leukemia cells. Expanded CD8+ NKT cells produced far less graft-versus-host disease (GVHD) than splenocytes across major histocompatibility barriers, even when 10 times the number of CD8+ NKT cells as compared to splenocytes were injected. This reduction in GVHD was related to IFN-γ production since cells expanded from IFN-γ knock-out animals caused acute lethal GVHD, whereas cells expanded from animals defective in fas ligand, fas, IL-2, and perforin did not. These data indicate that CD8+ NKT cells expanded in this fashion could be useful for preserving graft-versus-leukemia activity without causing GVHD.


2006 ◽  
Vol 106 (1) ◽  
pp. 82-90 ◽  
Author(s):  
Masaki Kuwatani ◽  
Yoshinori Ikarashi ◽  
Akira Iizuka ◽  
Chihiro Kawakami ◽  
Gary Quinn ◽  
...  

Medicine ◽  
2018 ◽  
Vol 97 (38) ◽  
pp. e12429 ◽  
Author(s):  
Lixia Sheng ◽  
Huarui Fu ◽  
Yamin Tan ◽  
Yongxian Hu ◽  
Qitian Mu ◽  
...  

2019 ◽  
Vol 3 (7) ◽  
pp. 984-994 ◽  
Author(s):  
Jennifer S. Whangbo ◽  
Haesook T. Kim ◽  
Sarah Nikiforow ◽  
John Koreth ◽  
Ana C. Alho ◽  
...  

Abstract Patients with chronic graft-versus-host disease (cGVHD) have a paucity of regulatory CD4 T cells (CD4Tregs) that mediate peripheral tolerance. In clinical trials, daily low-dose interleukin-2 (IL-2) has been administered safely for prolonged periods in patients with steroid-refractory cGVHD. Peripheral CD4Tregs expand dramatically in all patients during IL-2 therapy but clinical improvement was observed in ∼50% of patients. Here, we examined the impact of low-dose IL-2 therapy on functional T-cell markers and the T-cell repertoire within CD4Tregs, conventional CD4 T cells (CD4Tcons), and CD8+ T cells. IL-2 had profound effects on CD4Tregs homeostasis in both response groups including selective expansion of the naive subset, improved thymic output, and increased expression of Ki67, FOXP3, and B-cell lymphoma 2 within CD4Tregs. Similar changes were not seen in CD4Tcons or CD8 T cells. Functionally, low-dose IL-2 enhanced, in vitro, CD4Treg-suppressive activity in both response groups, and all patient CD4Tcons were similarly suppressed by healthy donor CD4Tregs. High-throughput sequencing of the T-cell receptor β (TCRβ) locus demonstrated that low-dose IL-2 therapy increased TCR repertoire diversity and decreased evenness within CD4Tregs without affecting CD4Tcons or CD8 T cells. Using clone-tracking analysis, we observed rapid turnover of highly prevalent clones in CD4Tregs as well as the conversion of CD4Tcons to CD4Tregs. After 12 weeks of daily IL-2, clinical responders had a greater influx of novel clones within the CD4Treg compartment compared with nonresponders. Further studies to define the function and specificity of these novel CD4Treg clones may help establish the mechanisms whereby low-dose IL-2 therapy promotes immune tolerance.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 231-231
Author(s):  
Abdulraouf Ramadan ◽  
Jilu Zhang ◽  
Mohammad Abu Zaid ◽  
Heather O'Leary ◽  
Reuben Kapur ◽  
...  

Abstract Treatment of acute myeloid leukemia (AML) has changed little over the last several decades and prognosis remains very poor. Allogeneic hematopoietic cell transplantation (allo-HCT) is one potentially curative option for relapsed or high-risk AML. The immunotherapeutic activity of allo-HCT is known as the graft-vs-leukemia (GVL) activity. However, GVL activity is often accompanied by T-cell reactivity to allo-antigens in normal host tissues, which leads to graft-versus-host disease (GVHD), another major cause of death after HCT with relapse. Therefore, there is a great unmet need to improve the current process of allo-HCT through increasing the GVL activity and decreasing GVHD. We have shown that an elevated plasma level of soluble (s)ST2 in HCT patients is a risk factor for severe GVHD (Vander Lugt et al, N Engl J Med, 2013) and that ST2 blockade reduces sST2-producing T cells while maintaining protective membrane (m)ST2-expressing T cells during GVHD (Zhang et al, Sci Transl Med, 2015). In addition, the interleukin (IL)-9-producing CD4 T helper (Th)9 and CD8 cytotoxic T (Tc)9 cell subsets (together T9 cells) have higher antitumor activity than Th1 and Tc1 cells in melanoma models (Lu et al, J Clin Invest, 2012 and Lu et al, ProcNatl Acad Sci, 2014). We hypothesized that activation of the ST2/IL-33 pathway in T9 cells will both alleviate GVHD and increase GVL. In our laboratory, we have shown that T9 cells express a high level of mST2 and that differentiation of total T cells into T9 cells in the presence of IL-33 (T9IL-33 cells) increases expression of mST2 (Figure 1A) and PU.1 (Figure 1B), a transcription factor that promotes IL-9 production on both CD4 and CD8 T cells. Adoptive transfer of T9IL-33 cells with bone marrow cells in a murine model of HCT resulted in less severe GVHD compared to transfer of T9IL33 cells generated from ST2-/- or IL-9-/- T cells (Figure 1C). Ex-vivo analysis of target organs such as gut showed a decrease in T9IL-33 interferon (IFN)g-producing T cells that was abolished in mice receiving T9IL-33 cells derived from ST2-/- or IL-9-/- T cells (not shown). Furthermore, T9IL-33 cells revealed higher anti-leukemic activity in vitro when cultured with a B cell lymphoma line (A20) or retrovirally transduced MLL-AF9 leukemic cells in cytolytic assays (not shown). In vivo GVL experiments with MLL-AF9 induced leukemia, and adoptive transfer of T9IL-33 cells resulted in increased survival compared to transfer of T9IL-33 cells generated from ST2-/- or IL-9-/- T cells (Figure 1D). Human T9 cells are poorly explored. We demonstrated that differentiation of human T9 cells in the presence of IL-33 enhanced IL-9 production by CD4 and CD8 T cells (Figure 2A). T9IL-33 cells also upregulated the expression of the cytolytic molecules granzymes A and B compared to T9 cells (Th9IL-33: 33.6%±4%, vs. Th9: 15.69%±2.53% p=0.021), (Tc9IL-33: 57.6%±4.7%, vs. Tc9: 34.61%±3.4% p=0.018), as well as demonstrated higher in vitro anti- leukemic cytolytic activity when incubated with MOLM14, an aggressive AML tumor cell line expressing FLT3/ITD mutations (Figure 2B). Transcriptome analysis of T9IL-33 cells from wild-type and ST2-/- T cells showed upregulation of molecules implicated in anti-leukemic activity (granzymes A and B, CD8α, IL-15, IL-15rα, IFNα, and IL-1α) on both CD4 and CD8 T cells (Figure 2C), and such upregulation was confirmed at the protein level (Figure 2D). Furthermore,investigations into the possible mechanism of activation using transwell assays revealed that both soluble factors and cell contact between Th9IL-33 and Tc9IL-33 T cells were required for maximum killing (not shown). We next investigated the possible mechanism of action and hypothesized that CD8α might be the contact-dependent component. CD8α blockade with neutralizing antibody during human T9IL-33 differentiation reduced the cytotoxicity of both murine T9IL-33 and human T9IL-33 cells (Figure 2E). Altogether, our observations suggest that adoptive transfer of T9IL-33 cells represents a promising cellular therapy following HCT. Figure 1. Figure 1. Figure 2. Figure 2. Disclosures Paczesny: Viracor laboratories: Patents & Royalties: "Methods of detection of graft-versus-host disease" (US- 13/573,766).


Sign in / Sign up

Export Citation Format

Share Document