CXCL13/CXCR5 signaling enhances BCR-triggered B-cell activation by shaping cell dynamics

Blood ◽  
2011 ◽  
Vol 118 (6) ◽  
pp. 1560-1569 ◽  
Author(s):  
Julia Sáez de Guinoa ◽  
Laura Barrio ◽  
Mario Mellado ◽  
Yolanda R. Carrasco

Abstract Continuous migration of B cells at the follicle contrasts with their stable arrest after encounter with antigen. Two main ligand/receptor pairs are involved in these cell behaviors: the chemokine CXCL13/chemokine receptor CXCR5 and antigen/BCR. Little is known regarding the interplay between CXCR5 and BCR signaling in the modulation of B-cell dynamics and its effect on B-cell activation. We used a 2-dimensional model to study B-cell migration and antigen recognition in real time, and found that BCR signaling strength alters CXCL13-mediated migration, leading to a heterogeneous B-cell behavior pattern. In addition, we demonstrate that CXCL13/CXCR5 signaling does not impair BCR-triggered immune synapse formation and that CXCR5 is excluded from the central antigen cluster. CXCL13/CXCR5 signaling enhances BCR-mediated B-cell activation in at least 2 ways: (1) it assists antigen gathering at the synapse by promoting membrane ruffling and lymphocyte function–associated antigen 1 (LFA-1)–supported adhesion, and (2) it allows BCR signaling integration in motile B cells through establishment of LFA-1–supported migratory junctions. Both processes require functional actin cytoskeleton and non-muscle myosin II motor protein. Therefore, the CXCL13/CXCR5 signaling effect on shaping B-cell dynamics is an effective mechanism that enhances antigen encounter and BCR-triggered B-cell activation.

2021 ◽  
Vol 118 (43) ◽  
pp. e2108957118
Author(s):  
Wen Lu ◽  
Katarzyna M. Skrzypczynska ◽  
Arthur Weiss

T cell antigen receptor (TCR) and B cell antigen receptor (BCR) signaling are initiated and tightly regulated by Src-family kinases (SFKs). SFKs positively regulate TCR signaling in naïve T cells but have both positive and negative regulatory roles in BCR signaling in naïve B cells. The proper regulation of their activities depends on the opposing actions of receptor tyrosine phosphatases CD45 and CD148 and the cytoplasmic tyrosine kinase C-terminal Src kinase Csk. Csk is a major negative regulator of SFKs. Using a PP1-analog-sensitive Csk (CskAS) system, we have previously shown that inhibition of CskAS increases SFK activity, leading to augmentation of responses to weak TCR stimuli in T cells. However, the effects of Csk inhibition in B cells were not known. In this study, we surprisingly found that inhibition of CskAS led to marked inhibition of BCR-stimulated cytoplasmic free calcium increase and Erk activation despite increased SFK activation in B cells, contrasting the effects observed in T cells. Further investigation revealed that acute CskAS inhibition suppressed BCR-mediated phosphatidylinositol 3,4,5-trisphosphate (PIP3) production in B cells. Restoring PIP3 levels in B cells by CD19 cross-linking or SHIP1 deficiency eliminated the negative regulatory effect of CskAS inhibition. This reveals the critical role of Csk in maintaining an appropriate level of SFK activity and regulating PIP3 amounts as a means of compensating for SFK fluctuations to prevent inappropriate B cell activation. This regulatory mechanism controlling PIP3 amounts may also contribute to B cell anergy and self-tolerance.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Madison Bolger-Munro ◽  
Kate Choi ◽  
Joshua M Scurll ◽  
Libin Abraham ◽  
Rhys S Chappell ◽  
...  

When B cells encounter antigens on the surface of an antigen-presenting cell (APC), B cell receptors (BCRs) are gathered into microclusters that recruit signaling enzymes. These microclusters then move centripetally and coalesce into the central supramolecular activation cluster of an immune synapse. The mechanisms controlling BCR organization during immune synapse formation, and how this impacts BCR signaling, are not fully understood. We show that this coalescence of BCR microclusters depends on the actin-related protein 2/3 (Arp2/3) complex, which nucleates branched actin networks. Moreover, in murine B cells, this dynamic spatial reorganization of BCR microclusters amplifies proximal BCR signaling reactions and enhances the ability of membrane-associated antigens to induce transcriptional responses and proliferation. Our finding that Arp2/3 complex activity is important for B cell responses to spatially restricted membrane-bound antigens, but not for soluble antigens, highlights a critical role for Arp2/3 complex-dependent actin remodeling in B cell responses to APC-bound antigens.


2015 ◽  
Vol 20 (7) ◽  
pp. 876-886 ◽  
Author(s):  
Elizabeth B. Rex ◽  
Suzie Kim ◽  
Jake Wiener ◽  
Navin L. Rao ◽  
Marcos E. Milla ◽  
...  

An EPIC label-free phenotypic platform was developed to explore B cell receptor (BCR) and CD40R-mediated B cell activation. The phenotypic assay measured the association of RL non-Hodgkin’s lymphoma B cells expressing lymphocyte function-associated antigen 1 (LFA-1) to intercellular adhesion molecule 1 (ICAM-1)-coated EPIC plates. Anti-IgM (immunoglobulin M) mediated BCR activation elicited a response that was blocked by LFA-1/ICAM-1 specific inhibitors and a panel of Bruton’s tyrosine kinase (BTK) inhibitors. LFA-1/ICAM-1 association was further increased on coapplication of anti-IgM and mega CD40L when compared to individual application of either. Anti-IgM, mega CD40L, or the combination of both displayed distinct kinetic profiles that were inhibited by treatment with a BTK inhibitor. We also established a FLIPR-based assay to measure B cell activation in Ramos Burkitt’s lymphoma B cells and an RL cell line. Anti-IgM-mediated BCR activation elicited a robust calcium response that was inhibited by a panel of BTK inhibitors. Conversely, CD40R activation did not elicit a calcium response in the FLIPR assay. Compared to the FLIPR, the EPIC assay has the propensity to identify inhibitors of both BCR and CD40R-mediated B cell activation and may provide more pharmacological depth or novel mechanisms of action for inhibition of B cell activation.


Lupus ◽  
2021 ◽  
pp. 096120332110182
Author(s):  
JY Ju ◽  
ZW Xu

Background Lupus B cells not only produce autoantibodies against nuclear antigens but also provide co-stimulation to T cells. However, there is still a lack of comprehensive understanding of the mechanism underlying lupus B cell hyperactivation. Methods This study focuses on the detection of B cell activation status, analysis of early BCR signaling response, DNA sequencing, and quantity determination of BCR signaling regulators in murine lupus models. Results Our result showed that there is a B cell hyperactivation with a significant elevation of B cell activation markers, and a BCR signaling hyperactivity with an abnormal increase of phosphorylated BCR signaling molecules and cytoplasmic calcium in the early response to BCR crosslinking in B6.Sle1/2/3 lupus mouse. Whole exome sequencing identified a multiple point mutation in the exon of many BCR signaling regulators in common murine lupus models, MRL/lpr, NZM2410, BXSB, NZB, and NZW strains. cNDA sequencing confirmed FcγR2b, Ly9, Pirb, Siglecg, and CD22 BCR signaling regulator variants in B6.Sle1/2/3 lupus mouse, but surface protein expression of these regulators on B cells showed an abnormal increase. Conclusion Our findings support that these BCR signaling regulator variants are potential causative genes of B cell hyperactivation in murine lupus models through their possible functional reduction.


2020 ◽  
Author(s):  
Luqman O Awoniyi ◽  
Vid Šuštar ◽  
Sara Hernández-Pérez ◽  
Marika Vainio ◽  
Alexey V Sarapulov ◽  
...  

ABSTRACTB lymphocytes form a central part of the adaptive immune system, helping to clear infections by mounting antibody responses and immunological memory. B cell activation is critically controlled by a specific antigen receptor, the B cell receptor (BCR), which triggers a complex, multibranched signaling cascade initiating various cellular changes. While parts of these pathways are reasonably well characterized, we still lack a comprehensive protein-level view of the very dynamic and robust cellular response triggered by antigen engagement. Ability to track, with sufficient kinetic resolution, the protein machineries responding to BCR signaling is imperative to provide new understanding into this complex cell activation event. We address this challenge by using APEX2 proximity labeling technique, that allows capture a major fraction of proteins in a given location with 20nm range and 1min time window, and target the APEX2 enzyme to the plasma membrane lipid raft domain, where BCR efficiently translocates upon activation. Our data provides unprecedented insights into the protein composition of lipid raft environment in B cells, and the changes triggered there upon BCR cross-linking and translocation. In total, we identified 1677 proteins locating at the vicinity of lipid raft domains in cultured mouse B cells. The data includes a majority of proteins known to be involved in proximal BCR signaling. Interestingly, our differential enrichment analysis identified various proteins that underwent dynamic changes in their localization but that had no previously known linkage to early B cell activation. As expected, we also identified, for example, a wealth of proteins linked to clathrin-mediated endocytosis that were recruited to the lipid rafts upon cell activation. We believe that his data serves as a valuable record of proteins involved in BCR activation response and aid various future studies in the field.


2018 ◽  
Author(s):  
Madison Bolger-Munro ◽  
Kate Choi ◽  
Joshua Scurll ◽  
Libin Abraham ◽  
Rhys Chappell ◽  
...  

AbstractWhen B cells encounter antigens on the surface of an antigen-presenting cell (APC), B cell receptors (BCRs) are gathered into microclusters that recruit signaling enzymes. These microclusters then move centripetally and coalesce into the central supramolecular activation cluster of an immune synapse. The mechanisms controlling BCR organization during immune synapse formation, and how this impacts BCR signaling, are not fully understood. We show that this coalescence of BCR microclusters depends on the actin-related protein 2/3 (Arp2/3) complex, which nucleates branched actin networks. Moreover, in murine B cells this dynamic spatial reorganization of BCR microclusters amplifies proximal BCR signaling reactions and enhances the ability of membrane-associated antigens to induce transcriptional responses and proliferation. Our finding that Arp2/3 complex activity is important for B cell responses to spatially-restricted membrane-bound antigens, but not for soluble antigens, highlights a critical role for Arp2/3 complex-dependent actin remodelling in B cell responses to APC-bound antigens.


2018 ◽  
Author(s):  
Ariele L. Greenfield ◽  
Ravi Dandekar ◽  
Akshaya Ramesh ◽  
Erica L. Eggers ◽  
Hao Wu ◽  
...  

AbstractB-cells are key contributors to chronic autoimmune pathology in multiple sclerosis (MS). Clonally related B-cells exist in the cerebrospinal fluid (CSF), meninges, and central nervous system (CNS) parenchyma of MS patients. Longitudinally stable CSF oligoclonal band (OCB) antibody patterns suggest some local CNS B-cell persistence; however, the longitudinal B-cell dynamics within and between the CSF and blood remain unknown. We sought to address this by performing immunoglobulin heavy chain variable region repertoire sequencing on B-cells from longitudinally collected blood and CSF samples of MS patients (n=10). All patients were untreated at the time of the initial sampling; the majority (n=7) were treated with immune modulating therapies 1.2 (+/−0.3 SD) years later during the second sampling. We found clonal persistence of B-cells in the CSF of five patients; these B-cells were frequently immunoglobulin (Ig) class-switched and CD27+. We identified specific blood B-cell subsets that appear to provide input into CNS repertoires over time. We demonstrate complex patterns of clonal B-cell persistence in CSF and blood, even in patients on high-efficacy immune modulating therapy. Our findings support the concept that peripheral B-cell activation and CNS-compartmentalized immune mechanisms are in part therapy-resistant.


Sign in / Sign up

Export Citation Format

Share Document