scholarly journals Longitudinally persistent cerebrospinal fluid B-cells resist treatment in multiple sclerosis

2018 ◽  
Author(s):  
Ariele L. Greenfield ◽  
Ravi Dandekar ◽  
Akshaya Ramesh ◽  
Erica L. Eggers ◽  
Hao Wu ◽  
...  

AbstractB-cells are key contributors to chronic autoimmune pathology in multiple sclerosis (MS). Clonally related B-cells exist in the cerebrospinal fluid (CSF), meninges, and central nervous system (CNS) parenchyma of MS patients. Longitudinally stable CSF oligoclonal band (OCB) antibody patterns suggest some local CNS B-cell persistence; however, the longitudinal B-cell dynamics within and between the CSF and blood remain unknown. We sought to address this by performing immunoglobulin heavy chain variable region repertoire sequencing on B-cells from longitudinally collected blood and CSF samples of MS patients (n=10). All patients were untreated at the time of the initial sampling; the majority (n=7) were treated with immune modulating therapies 1.2 (+/−0.3 SD) years later during the second sampling. We found clonal persistence of B-cells in the CSF of five patients; these B-cells were frequently immunoglobulin (Ig) class-switched and CD27+. We identified specific blood B-cell subsets that appear to provide input into CNS repertoires over time. We demonstrate complex patterns of clonal B-cell persistence in CSF and blood, even in patients on high-efficacy immune modulating therapy. Our findings support the concept that peripheral B-cell activation and CNS-compartmentalized immune mechanisms are in part therapy-resistant.

2017 ◽  
Vol 114 (44) ◽  
pp. E9328-E9337 ◽  
Author(s):  
Dan Su ◽  
Stijn Vanhee ◽  
Rebeca Soria ◽  
Elin Jaensson Gyllenbäck ◽  
Linda M. Starnes ◽  
...  

B cell receptor signaling and downstream NF-κB activity are crucial for the maturation and functionality of all major B cell subsets, yet the molecular players in these signaling events are not fully understood. Here we use several genetically modified mouse models to demonstrate that expression of the multifunctional BRCT (BRCA1 C-terminal) domain-containing PTIP (Pax transactivation domain-interacting protein) chromatin regulator is controlled by B cell activation and potentiates steady-state and postimmune antibody production in vivo. By examining the effects of PTIP deficiency in mice at various ages during ontogeny, we demonstrate that PTIP promotes bone marrow B cell development as well as the neonatal establishment and subsequent long-term maintenance of self-reactive B-1 B cells. Furthermore, we find that PTIP is required for B cell receptor- and T:B interaction-induced proliferation, differentiation of follicular B cells during germinal center formation, and normal signaling through the classical NF-κB pathway. Together with the previously identified role for PTIP in promoting sterile transcription at the Igh locus, the present results establish PTIP as a licensing factor for humoral immunity that acts at several junctures of B lineage maturation and effector cell differentiation by controlling B cell activation.


2020 ◽  
Vol 7 (2) ◽  
pp. e669 ◽  
Author(s):  
Klaus Lehmann-Horn ◽  
Sarosh R. Irani ◽  
Shengzhi Wang ◽  
Arumugam Palanichamy ◽  
Sarah Jahn ◽  
...  

ObjectiveTo study intrathecal B-cell activity in leucine-rich, glioma-inactivated 1 (LGI1) antibody encephalitis. In patients with LGI1 antibodies, the lack of CSF lymphocytosis or oligoclonal bands and serum-predominant LGI1 antibodies suggests a peripherally initiated immune response. However, it is unknown whether B cells within the CNS contribute to the ongoing pathogenesis of LGI1 antibody encephalitis.MethodsPaired CSF and peripheral blood (PB) mononuclear cells were collected from 6 patients with LGI1 antibody encephalitis and 2 patients with other neurologic diseases. Deep B-cell immune repertoire sequencing was performed on immunoglobulin heavy chain transcripts from CSF B cells and sorted PB B-cell subsets. In addition, LGI1 antibody levels were determined in CSF and PB.ResultsSerum LGI1 antibody titers were on average 127-fold higher than CSF LGI1 antibody titers. Yet, deep B-cell repertoire analysis demonstrated a restricted CSF repertoire with frequent extensive clusters of clonally related B cells connected to mature PB B cells. These clusters showed intensive mutational activity of CSF B cells, providing strong evidence for an independent CNS-based antigen-driven response in patients with LGI1 antibody encephalitis but not in controls.ConclusionsOur results demonstrate that intrathecal immunoglobulin repertoire expansion is a feature of LGI1 antibody encephalitis and suggests a need for CNS-penetrant therapies.


Blood ◽  
2012 ◽  
Vol 119 (16) ◽  
pp. 3744-3756 ◽  
Author(s):  
Laurens P. Kil ◽  
Marjolein J. W. de Bruijn ◽  
Menno van Nimwegen ◽  
Odilia B. J. Corneth ◽  
Jan Piet van Hamburg ◽  
...  

Abstract On antigen binding by the B-cell receptor (BCR), B cells up-regulate protein expression of the key downstream signaling molecule Bruton tyrosine kinase (Btk), but the effects of Btk up-regulation on B-cell function are unknown. Here, we show that transgenic mice overexpressing Btk specifically in B cells spontaneously formed germinal centers and manifested increased plasma cell numbers, leading to antinuclear autoantibody production and systemic lupus erythematosus (SLE)–like autoimmune pathology affecting kidneys, lungs, and salivary glands. Autoimmunity was fully dependent on Btk kinase activity, because Btk inhibitor treatment (PCI-32765) could normalize B-cell activation and differentiation, and because autoantibodies were absent in Btk transgenic mice overexpressing a kinase inactive Btk mutant. B cells overexpressing wild-type Btk were selectively hyperresponsive to BCR stimulation and showed enhanced Ca2+ influx, nuclear factor (NF)–κB activation, resistance to Fas-mediated apoptosis, and defective elimination of selfreactive B cells in vivo. These findings unravel a crucial role for Btk in setting the threshold for B-cell activation and counterselection of autoreactive B cells, making Btk an attractive therapeutic target in systemic autoimmune disease such as SLE. The finding of in vivo pathology associated with Btk overexpression may have important implications for the development of gene therapy strategies for X-linked agammaglobulinemia, the immunodeficiency associated with mutations in BTK.


2004 ◽  
Vol 200 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Christopher M. Snyder ◽  
Katja Aviszus ◽  
Ryan A. Heiser ◽  
Daniel R. Tonkin ◽  
Amanda M. Guth ◽  
...  

Antibody diversity creates an immunoregulatory challenge for T cells that must cooperate with B cells, yet discriminate between self and nonself. To examine the consequences of T cell reactions to the B cell receptor (BCR), we generated a transgenic (Tg) line of mice expressing a T cell receptor (TCR) specific for a κ variable region peptide in monoclonal antibody (mAb) 36-71. The κ epitope was originally generated by a pair of somatic mutations that arose naturally during an immune response. By crossing this TCR Tg mouse with mice expressing the κ chain of mAb 36-71, we found that κ-specific T cells were centrally deleted in thymi of progeny that inherited the κTg. Maternally derived κTg antibody also induced central deletion. In marked contrast, adoptive transfer of TCR Tg T cells into κTg recipients resulted in T and B cell activation, lymphadenopathy, splenomegaly, and the production of IgG antichromatin antibodies by day 14. In most recipients, autoantibody levels increased with time, Tg T cells persisted for months, and a state of lupus nephritis developed. Despite this, Tg T cells appeared to be tolerant as assessed by severely diminished proliferative responses to the Vκ peptide. These results reveal the importance of attaining central and peripheral T cell tolerance to BCR V regions. They suggest that nondeletional forms of T tolerance in BCR-reactive T cells may be insufficient to preclude helper activity for chromatin-reactive B cells.


1977 ◽  
Vol 146 (1) ◽  
pp. 1-10 ◽  
Author(s):  
GK Lewis ◽  
JW Goodman

The capacity of the trinitrophenyl (TNP) haptenic group, coupled to a series of chemically dissimilar carriers, to cross-stimulate putative T- dependent and T-independent murine B-cell subpepulations was determined by using an in vitro limiting dilution technique to generate primary IgM responses. It was found that TNP-Ficoll and TNP-dextran, two T- independent antigens with little or no polyclonal mitogenicity, stimulate the same population of anti-TNP precursors, which is distinct from the precursor population activated by TNP-bacterial lipopolysaccharide (LPS), a T-independent polyclonal mitogen, or TNP-horse erythrocytes (HRBC), a T-dependent antigen. On the other hand, TNP-LPS and TNP-HRBC activate the same precursor population, indicating that LPS can substitute for the T- cell signal in T-dependent B-cell responses, whereas nonmitogenic T- independent antigens cannot. However, the cumulative evidence from this and other laboratories strongly indicates that LPS and T-dependent antigens activate B cells by different mechanisms. Of particular interest, LPS is incapable of activating B cells responsive to weakly- or nonmitogenic T-independent antigens. Based on clonal burst size, T-dependent antigens are capable of inducing greater antigen-specific B-cell proliferation than T-independent antigens. However, TNP conjugates of Ficoll and dextran, which are relatively poor inducers of polyclonal B-cell activation, induced larger anti-TNP clones than did TNP-LPS, a strong polyclonal mitogen. The findings reinforce the evidence favoring existence of multiple B- cell subpopulations with distinctive activation pathways. They also strengthen the proposition that a given B-cell subset can be activated by more than one mechanism.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Susanne E Mortazavi ◽  
Allan Lugaajju ◽  
Mark Kaddumukasa ◽  
Muyideen Kolapo Tijani ◽  
Fred Kironde ◽  
...  

Abstract Background The dysregulation of B cell activation is prevalent during naturally acquired immunity against malaria. Osteopontin (OPN), a protein produced by various cells including B cells, is a phosphorylated glycoprotein that participates in immune regulation and has been suggested to be involved in the immune response against malaria. Here we studied the longitudinal concentrations of OPN in infants and their mothers living in Uganda, and how OPN concentrations correlated with B cell subsets specific for P. falciparum and B cell activating factor (BAFF). We also investigated the direct effect of OPN on P. falciparum in vitro. Results The OPN concentration was higher in the infants compared to the mothers, and OPN concentration in infants decreased from birth until 9 months. OPN concentration in infants during 9 months were independent of OPN concentrations in corresponding mothers. OPN concentrations in infants were inversely correlated with total atypical memory B cells (MBCs) as well as P. falciparum-specific atypical MBCs. There was a positive correlation between OPN and BAFF concentrations in both mothers and infants. When OPN was added to P. falciparum cultured in vitro, parasitemia was unaffected regardless of OPN concentration. Conclusions The concentrations of OPN in infants were higher and independent of the OPN concentrations in corresponding mothers. In vitro, OPN does not have a direct effect on P. falciparum growth. Our correlation analysis results suggest that OPN could have a role in the B cell immune response and acquisition of natural immunity against malaria.


2017 ◽  
Author(s):  
Ankit Mahendra ◽  
Xingyu Yang ◽  
Shaza Abnouf ◽  
Daechan Park ◽  
Sanam Soomro ◽  
...  

AbstractAlthough the contribution of B-cell derived autoreactive antibodies to rheumatoid arthritis (RA) has been studied extensively, the autoantibody-independent roles of B cells in the progression of the disease is not well-defined. Here we present the first comprehensive transcriptome profile of human autoreactive B cells in an autoimmune disease by performing RNA-sequencing of citrulline-specific B cells from RA patients. In order to facilitate a comprehensive understanding of the profile of these citrulline-specific (RA-CCPPOS) B cells, we performed comparative analyses to both citrulline-negative (RA-CCPNEG) B cells from the same donors, and identified 431 differentially expressed genes (DEGs); and hemagglutinin-specific (HA) B cells from healthy individuals and identified 1658 DEGs. Three-way comparisons of these B cell populations demonstrated that RA-CCPPOS B cells, in comparison to the RA-CCPNEG B cells, demonstrate a potential role in protein citrullination and inflammation; RA-CCPPOS B cells in comparison to HA-specific B cells demonstrate RA-specific signatures like the expression of pro-inflammatory cytokines, chemokines, costimulatory molecules and B-cell activation cascades; and all B cells from RA patients demonstrated a significant impact of the multitude of TNF signaling pathways. Furthermore, transcription factor profiling suggested that cyclic AMP (cAMP) related pathways and downstream signaling molecules are selectively enriched in RA-CCPPOS cells in comparison to the other two B cell subsets. We advanced the understanding of the citrulline reactive B cells in RA pathophysiology by documenting and validating two novel observations in independent cohorts of patients: (1) the expression of IL15Rα is restricted to citrulline-specific cells within RA patients and the concentration of soluble IL15Rα is elevated in the sera of RA patients, (2) B cells from RA patients are capable of producing epidermal growth factor ligand, amphiregulin (AREG) which in turn has a direct impact on the mechanistic effectors of RA, osteoclasts and fibroblastlike synoviocytes (FLS). Overall, our comprehensive dataset identifies several existing FDA-approved drugs that can potentially be repurposed for RA and can serve as a foundation for studying the multi-faceted roles of B cells in other autoimmune diseases.


2021 ◽  
Vol 9 ◽  
Author(s):  
Johannes Dirks ◽  
Jonas Fischer ◽  
Gabriele Haase ◽  
Annette Holl-Wieden ◽  
Christine Hofmann ◽  
...  

Juvenile idiopathic arthritis (JIA) encompasses a heterogeneous group of diseases. The appearance of antinuclear antibodies (ANAs) in almost half of the patients suggests B cell dysregulation as a distinct pathomechanism in these patients. Additionally, ANAs were considered potential biomarkers encompassing a clinically homogenous subgroup of JIA patients. However, in ANA+ JIA patients, the site of dysregulated B cell activation as well as the B cell subsets involved in this process is still unknown. Hence, in this cross-sectional study, we aimed in an explorative approach at characterizing potential divergences in B cell differentiation in ANA+ JIA patients by assessing the distribution of peripheral blood (PB) and synovial fluid (SF) B cell subpopulations using flow cytometry. The frequency of transitional as well as switched-memory B cells was higher in PB of JIA patients than in healthy controls. There were no differences in the distribution of B cell subsets between ANA- and ANA+ patients in PB. However, the composition of SF B cells was different between ANA- and ANA+ patients with increased frequencies of CD21lo/−CD27−IgM− “double negative” (DN) B cells in the latter. DN B cells might be a characteristic subset expanding in the joints of ANA+ JIA patients and are potentially involved in the antinuclear immune response in these patients. The results of our explorative study might foster further research dissecting the pathogenesis of ANA+ JIA patients.


2021 ◽  
Vol 11 ◽  
Author(s):  
Kanae Akita ◽  
Ken Yasaka ◽  
Tsuyoshi Shirai ◽  
Tomonori Ishii ◽  
Hideo Harigae ◽  
...  

Systemic lupus erythematosus (SLE) is an autoimmune disease. It is characterized by the production of various pathogenic autoantibodies and is suggested to be triggered by increased type I interferon (IFN) signature. Previous studies have identified increased plasmablasts in the peripheral blood of SLE patients. The biological characteristics of SLE plasmablasts remain unknown, and few treatments that target SLE plasmablasts have been applied despite the unique cellular properties of plasmablasts compared with other B cell subsets and plasma cells. We conducted microarray analysis of naïve and memory B cells and plasmablasts (CD38+CD43+ B cells) that were freshly isolated from healthy controls and active SLE (n = 4, each) to clarify the unique biological properties of SLE plasmablasts. The results revealed that all B cell subsets of SLE expressed more type I IFN-stimulated genes. In addition, SLE plasmablasts upregulated the expression of cell cycle-related genes associated with higher FOXM1 and FOXM1-regulated gene expression levels than that in healthy controls. This suggests that a causative relationship exists between type I IFN priming and enhanced proliferative capacity through FOXM1. The effects of pretreatment of IFNα on B cell activation and FOXM1 inhibitor FDI-6 on B cell proliferation and survival were investigated. Pretreatment with IFNα promoted B cell activation after stimulation with anti-IgG/IgM antibody. Flow cytometry revealed that pretreatment with IFNα preferentially enhanced the Atk and p38 pathways after triggering B cell receptors. FDI-6 inhibited cell division and induced apoptosis in activated B cells. These effects were pronounced in activated B cells pretreated with interferon α. This study can provide better understanding of the pathogenic mechanism of interferon-stimulated genes on SLE B cells and an insight into the development of novel therapeutic strategies.


Sign in / Sign up

Export Citation Format

Share Document