scholarly journals Characterization of four conventional dendritic cell subsets in human skin-draining lymph nodes in relation to T-cell activation

Blood ◽  
2011 ◽  
Vol 118 (9) ◽  
pp. 2502-2510 ◽  
Author(s):  
Rieneke van de Ven ◽  
Mari F. C. M. van den Hout ◽  
Jelle J. Lindenberg ◽  
Berbel J. R. Sluijter ◽  
Paul A. M. van Leeuwen ◽  
...  

Abstract To increase (tumor) vaccine efficacy, there is an urgent need for phenotypic and functional characterization of human dendritic cell (DC) subsets residing in lymphoid tissues. In this study we identified and functionally tested 4 human conventional DC (cDC) subsets within skin-draining sentinel lymph nodes (SLNs) from early-stage melanoma patients. These SLNs were all tumor negative and were removed on average 44 days after excision of the primary melanoma. As such, they were considered representative of steady-state conditions. On comparison with skin-migrated cDC, 2 CD1a+ subsets were identified as most likely skin-derived CD11cint Langerhans cells (LC) with intracellular langerin and E-cadherin expression or as CD11chi dermal DCs with variable expression of langerin. Two other CD1a− LN-residing cDC subsets were characterized as CD14−BDCA3hiCD103− and CD14+BDCA3loCD103+, respectively. Whereas the CD1a+ skin-derived subsets displayed greater levels of phenotypic maturation, they were associated with lower levels of inflammatory cytokine release and were inferior in terms of allogeneic T-cell priming and IFNγ induction. Thus, despite their higher maturation state, skin-derived cDCs (and LCs in particular) proved inferior T-cell activators compared with the CD1a− cDC subsets residing in melanoma-draining LNs. These observations should be considered in the design of DC-targeting immunotherapies.

1987 ◽  
Vol 84 (12) ◽  
pp. 4205-4209 ◽  
Author(s):  
M. E. Cosulich ◽  
A. Rubartelli ◽  
A. Risso ◽  
F. Cozzolino ◽  
A. Bargellesi

PLoS ONE ◽  
2014 ◽  
Vol 9 (8) ◽  
pp. e104298 ◽  
Author(s):  
Balázs Szalay ◽  
Áron Cseh ◽  
Gergő Mészáros ◽  
László Kovács ◽  
Attila Balog ◽  
...  

Oncogene ◽  
2021 ◽  
Author(s):  
Francesca Alfei ◽  
Ping-Chih Ho ◽  
Wan-Lin Lo

AbstractThe exploitation of T cell-based immunotherapies and immune checkpoint blockade for cancer treatment has dramatically shifted oncological treatment paradigms and broadened the horizons of cancer immunology. Dendritic cells have emerged as the critical tailors of T cell immune responses, which initiate and coordinate anti-tumor immunity. Importantly, genetic alterations in cancer cells, cytokines and chemokines produced by cancer and stromal cells, and the process of tumor microenvironmental regulation can compromise dendritic cell–T cell cross-talk, thereby disrupting anti-tumor T cell responses. This review summarizes how T cell activation is controlled by dendritic cells and how the tumor microenvironment alters dendritic cell properties in the context of the anti-tumor immune cycle. Furthermore, we will highlight therapeutic options for tailoring dendritic cell-mediated decision-making in T cells for cancer treatment.


2015 ◽  
Vol 9 (1) ◽  
pp. 24-37 ◽  
Author(s):  
S M Dillon ◽  
E J Lee ◽  
C V Kotter ◽  
G L Austin ◽  
S Gianella ◽  
...  

2004 ◽  
Vol 72 (7) ◽  
pp. 4233-4239 ◽  
Author(s):  
Andrew L. Leisewitz ◽  
Kirk A. Rockett ◽  
Bonginkosi Gumede ◽  
Margaret Jones ◽  
Britta Urban ◽  
...  

ABSTRACT Dendritic cells, particularly those residing in the spleen, are thought to orchestrate acquired immunity to malaria, but it is not known how the splenic dendritic cell population responds to malaria infection and how this response compares with the responses of other antigen-presenting cells. We investigated this question for Plasmodium chabaudi AS infection in C57BL/6 mice. We found that dendritic cells, defined here by the CD11c marker, migrated from the marginal zone of the spleen into the CD4+ T-cell area within 5 days after parasites entered the bloodstream. This contrasted with the results observed for the macrophage and B-cell populations, which expanded greatly but did not show any comparable migration. Over the same time period dendritic cells showed upregulation of CD40, CD54, and CD86 costimulatory molecules that are required for successful T-cell activation. In dendritic cells, the peak intracellular gamma interferon expression (as shown by fluorescence-activated cell sorting) was on day 5, 2 days earlier than the peak expression in B-cells or macrophages. These findings show that splenic dendritic cells are actively engaged in the earliest phase of malarial infection in vivo and are likely to be critical in shaping the subsequent immune response.


Sign in / Sign up

Export Citation Format

Share Document