scholarly journals IL-21 is the primary common γ chain-binding cytokine required for human B-cell differentiation in vivo

Blood ◽  
2011 ◽  
Vol 118 (26) ◽  
pp. 6824-6835 ◽  
Author(s):  
Mike Recher ◽  
Lucinda J. Berglund ◽  
Danielle T. Avery ◽  
Morton J. Cowan ◽  
Andrew R. Gennery ◽  
...  

Abstract SCID resulting from mutations in IL2RG or JAK3 is characterized by lack of T and natural killer cells; B cells are present in normal number, but antibody responses are defective. Hematopoietic cell transplantation (HCT) is curative for SCID. However, B-cell dysfunction persists in a substantial proportion of patients. We hypothesized that impaired B-cell responses after HCT in IL2RG/JAK3 deficiency results from poor donor B-cell engraftment and defective γc-dependent cytokine signaling in host B cells. To test this, and to identify which γc cytokine(s) is critical for humoral immunity, we studied 28 transplanted patients with IL2RG/JAK3 deficiency. Lack of donor B-cell engraftment associated with persistent humoral dysfunction and significantly reduced memory B cells. B-cell proliferation induced by CD40L alone or together with CpG, anti-Ig, IL-4, IL-10, or IL-13 was comparable in healthy controls and in post-HCT SCID patients, irrespective of their chimerism status. However, in vitro stimulation with CD40L/IL-21 induced B-cell proliferation, plasmablast differentiation, and antibody secretion in patients with donor B cells, but not in patients with autologous B cells. These data imply that IL-21–mediated signaling is critical for long-lived humoral immunity and to restore antibody responses in IL2RG/JAK3-deficient patients after HCT. Furthermore, in vitro stimulation with CD40L/IL-21 can predict in vivo B-cell immunity in IL2RG/JAK3 SCID after transplantation.

2001 ◽  
Vol 193 (4) ◽  
pp. 417-426 ◽  
Author(s):  
Tsuneyasu Kaisho ◽  
Kiyoshi Takeda ◽  
Tohru Tsujimura ◽  
Taro Kawai ◽  
Fumiko Nomura ◽  
...  

IκB kinase (IKK) α and β phosphorylate IκB proteins and activate the transcription factor, nuclear factor (NF)-κB. Although both are highly homologous kinases, gene targeting experiments revealed their differential roles in vivo. IKKα is involved in skin and limb morphogenesis, whereas IKKβ is essential for cytokine signaling. To elucidate in vivo roles of IKKα in hematopoietic cells, we have generated bone marrow chimeras by transferring control and IKKα-deficient fetal liver cells. The mature B cell population was decreased in IKKα−/− chimeras. IKKα−/− chimeras also exhibited a decrease of serum immunoglobulin basal level and impaired antigen-specific immune responses. Histologically, they also manifested marked disruption of germinal center formation and splenic microarchitectures that depend on mature B cells. IKKα−/− B cells not only showed impairment of survival and mitogenic responses in vitro, accompanied by decreased, although inducible, NF-κB activity, but also increased turnover rate in vivo. In addition, transgene expression of bcl-2 could only partially rescue impaired B cell development in IKKα−/− chimeras. Taken together, these results demonstrate that IKKα is critically involved in the prevention of cell death and functional development of mature B cells.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3735-3735
Author(s):  
Adam D Cohen ◽  
Indira D Joshi ◽  
Valentin Robu ◽  
Hossein Borghaei ◽  
Tahseen I. Al-Saleem ◽  
...  

Abstract Abstract 3735 Agonist monoclonal antibodies (mAbs) to CD137, a co-stimulatory TNF receptor family member expressed on activated T and NK cells, can induce immune-mediated rejection of multiple murine tumor types, and a fully human anti-CD137 mAb, BMS-663513, is in early-phase clinical trials in solid tumors. Significant activity has been seen in murine lymphoma models, both alone and in combination with anti-CD20 mAbs, providing rationale for clinical studies in lymphoma patients. Recently, however, CD137 up-regulation on activated human B cells has been reported, with CD137 ligation causing enhanced B cell proliferation and survival. This raises the concern that mAb binding to CD137, if present, on B cell neoplasms may promote tumor cell proliferation and/or resistance to apoptosis that may counteract the beneficial effects on T and NK cells. We therefore sought to assess the expression of CD137 on a series of human cell lines and primary tumor samples from patients with B-cell neoplasms, and if expressed, to explore the consequences of ligation with the anti-CD137 agonist BMS-66513. First, archived paraffin-embedded lymph node specimens from patients with low-grade B-cell lymphoma (n=11: 5 follicular, 4 marginal zone, 2 small lymphocytic) and diffuse large B-cell lymphoma (n=15) were stained for CD137 by immunohistochemistry. Reactive tonsillar tissue served as a positive control. No CD137 expression was observed within any tumor cells. Next, fresh samples from 14 additional patients with known tumor involvement of peripheral blood or bone marrow (8 chronic lymphocytic leukemia, 1 mantle cell lymphoma, 3 myeloma, 2 marginal zone lymphoma) were analyzed by multi-color flow cytometry. Again, no CD137 expression was observed on the gated neoplastic cells. Baseline surface expression of CD137 was similarly absent in all B cell-derived lines tested (Raji, FCTxFL2, FSCCL, DoHH2, Jeko-1, RPMI8226). However, activation with PMA/Ionomycin could reproducibly induce CD137 expression (% positive: 0.17% → 91%) after 24 hours in 1 of the lines: the follicular lymphoma FSCCL. Interestingly, this was the only line tested that lacked constitutive expression of CD137 ligand (CD137L), suggesting some reciprocal regulation of ligand and receptor expression. Despite this up-regulation of CD137, in vitro ligation of PMA/Ionomycin-activated FSCCL cells with BMS-66513 did not further increase tumor cell proliferation, nor protect the cells from activation-induced cell death, in contrast to effects of CD137 ligation reported in normal B cells (Zhang et al, J Immunol 2010; 184:787). Similarly, BMS-663513 treatment of activated, CD137+ FSCCL cells did not diminish the apoptosis induced by doxorubicin or bortezomib treatment. In addition, FSCCL cells recovered from ascites 7 and 14 days following intraperitoneal injection in SCID mice did not express CD137, implying that CD137 up-regulation is not occurring in vivo during tumor growth. Finally, treatment of FSCCL cells with rituximab, either in vitro or in vivo, did not induce CD137 expression. In conclusion, we demonstrate a lack of steady-state CD137 expression on malignant B cells, confirming the prior study by Houot et al (Blood 2009; 114:3431) and extending these findings to include CLL/SLL for the first time. While CD137 could be induced in a single cell line upon non-specific activation, CD137 expression on FSCCL cells was not seen under physiologic conditions likely to be encountered in the clinical setting, consistent with the primary patient data. Furthermore, even when CD137 was expressed, ligation with the agonist anti-CD137 mAb BMS-663513 did not provide a pro-proliferative or anti-apoptotic signal. These studies provide reassurance and further rationale for exploring agonist anti-CD137 antibodies as therapies for B cell neoplasms. Disclosures: Borghaei: Lilly, Genentech, Amgen, Pfizer: Honoraria, Research Funding. Jure-Kunkel:Bristol Meyers Squibb: Employment.


Blood ◽  
2012 ◽  
Vol 119 (6) ◽  
pp. 1440-1449 ◽  
Author(s):  
Felix M. Wensveen ◽  
Ingrid A. M. Derks ◽  
Klaas P. J. M. van Gisbergen ◽  
Alex M. de Bruin ◽  
Joost C. M. Meijers ◽  
...  

Abstract The efficiency of humoral immune responses depends on the selective outgrowth of B cells and plasmacells that produce high affinity antibodies. The factors responsible for affinity maturation of B cell clones in the germinal center (GC) have been well established but selection mechanisms that allow clones to enter the GC are largely unknown. Here we identify apoptosis, regulated by the proapoptotic BH3-only member Noxa (Pmaip1), as a critical factor for the selection of high-affinity clones during B cell expansion after antigen triggering. Noxa is induced in activated B cells, and its ablation provides a survival advantage both in vitro and in vivo. After immunization or influenza infection, Noxa−/− mice display enlarged GCs, in which B cells with reduced antigen affinity accumulate. As a consequence, Noxa−/− mice mount low affinity antibody responses compared with wild-type animals. Importantly, the low affinity responses correlate with increased immunoglobulin diversity, and cannot be corrected by booster immunization. Thus, normal elimination of low affinity cells favors outgrowth of the remaining high-affinity clones, and this is mandatory for the generation of proper antibody responses. Manipulation of this process may alter the breadth of antibody responses after immunization.


Blood ◽  
2016 ◽  
Vol 128 (12) ◽  
pp. 1604-1608 ◽  
Author(s):  
James Q. Wang ◽  
Bruce Beutler ◽  
Christopher C. Goodnow ◽  
Keisuke Horikawa

Key Points Inhibiting endosomal TLRs suppresses MYD88L265P B-cell proliferation in vitro. Inhibition of endosomal TLRs paradoxically enhances accumulation of MYD88L265P B cells as plasmablasts in vivo.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi98-vi98
Author(s):  
Brandyn Castro ◽  
Mark Dapash ◽  
David Hou ◽  
Aida Rashidi ◽  
Deepak Kanojia ◽  
...  

Abstract Glioblastomas (GBM) are characterized by a strong immunosuppressive environment, contributing to their poor prognosis and limited therapeutic response to immunotherapies. B-cells represent a unique opportunity to promote immunotherapy due to their potential to kill tumors by both cellular and humoral immunity. To generate our B-cell-based vaccine (BVax) platform, we activated 41BBL+ B cells from tumor bearing mice or GBM patient blood with BAFF, CD40, and IFNg. We have previously demonstrated that BVax potentiates radiation therapy, temozolomide and checkpoint blockade in murine models of GBM via enhancement of CD8+ T-cell based immunity. The aim of this current study is to evaluate the humoral effector functions of BVax. We examined the antibody (Ab) repertoire in vivo from serum of tumor-bearing B-cell knockout mice treated with BVax or by ex vivo stimulation of patient-derived BVax. Upon systemic administration, BVax infiltrates the tumor where it differentiates into plasmablasts. Murine BVax- and BNaive-derived serum immunoglobulin generated in vivo showed that the majority of murine BVax-derived Ab were IgG isotype, while BNaive mainly produced IgM isotype. Transfer of IgG from BVax treated mice directly into tumors of recipient animals significantly prolonged their survival, demonstrating anti-tumor cytotoxicity directly through humoral immunity. Patient-derived BVax activated ex vivo showed a plasmablast phenotype and the Ab repertoire supports the previous findings seen in our murine model. Our work suggests BVax-derived IgGs role in antibody-dependent cellular cytotoxicity and improved survival in murine models. This function, in addition to its role in cellular immunity against GBM, renders BVax a potentially effective alternative immunotherapeutic option for GBM patients.


2002 ◽  
Vol 9 (2) ◽  
pp. 86-95 ◽  
Author(s):  
Denise A. Kaminski ◽  
John J. Letterio ◽  
Peter D. Burrows

Transforming growth factor β (TGFβ) can inhibit thein vitroproliferation, survival and differentiation of B cell progenitors, mature B lymphocytes and plasma cells. Here we demonstrate unexpected, age-dependent reductions in the bone marrow (BM) B cell progenitors and immature B cells in TGFβ1-/-mice. To evaluate TGFβ responsiveness during normal B lineage development, cells were cultured in interleukin 7 (IL7)±TGFβ. Picomolar doses of TGFβ1 reduced pro-B cell recoveries at every timepoint. By contrast, the pre-B cells were initially reduced in number, but subsequently increased compared to IL7 alone, resulting in a 4-fold increase in the growth rate for the pre-B cell population. Analysis of purified BM sub-populations indicated that pro-B cells and the earliest BP1-pre-B cells were sensitive to the inhibitory effects of TGFβ1. However, the large BP1+pre-B cells, although initially reduced, were increased in number at days 5 and 7 of culture. These results indicate that TGFβ1 is important for normal B cell developmentin vivo, and that B cell progenitors are differentially affected by the cytokine according to their stage of differentiation.


1997 ◽  
Vol 272 (3) ◽  
pp. C950-C956 ◽  
Author(s):  
W. Fang ◽  
K. A. Nath ◽  
M. F. Mackey ◽  
R. J. Noelle ◽  
D. L. Mueller ◽  
...  

Signaling through the CD40 receptor on human and murine B lymphocytes is necessary for germinal center formation and immunoglobulin class switching in vivo and rescues B cells from apoptosis triggered by cross-linking of surface immunoglobulin M in vitro. Ligation of CD40 on the immature mouse B cell line WEHI-231 with recombinant CD40 ligand (CD40L) was found to protect cells from apoptosis after gamma irradiation, as well as that following treatment with the sphingomyelin ceramide or compounds that deplete intracellular glutathione. CD40 signaling led to a rapid increase in the expression of the apoptosis inhibitory protein Bcl-xL. In addition, the apoptosis-induced accumulation of intracellular oxidants in WEHI-231 B cells was rapidly diminished by CD40 crosslinking. This antioxidant response was observed within 1 h and coincided with a preservation of intracellular thiols. These findings indicate that CD40 signaling induces a generalized cellular resistance to apoptosis characterized by an upregulation of Bcl-xL and changes in the intracellular redox potential.


1996 ◽  
Vol 24 (4) ◽  
pp. 511S-511S
Author(s):  
B. Tyrberg ◽  
D.L. Eizirik ◽  
C. Hellerström ◽  
D.G. Pipeleers ◽  
A. Andersson

2004 ◽  
Vol 72 (6) ◽  
pp. 3515-3523 ◽  
Author(s):  
Muriel Viau ◽  
Nancy S. Longo ◽  
Peter E. Lipsky ◽  
Lars Björck ◽  
Moncef Zouali

ABSTRACT Some pathogens have evolved to produce proteins, called B-cell superantigens, that can interact with human immunoglobulin variable regions, independently of the combining site, and activate B lymphocytes that express the target immunoglobulins. However, the in vivo consequences of these interactions on human B-cell numbers and function are largely unknown. Using transgenic mice expressing fully human immunoglobulins, we studied the consequences of in vivo exposure of protein L of Peptostreptococcus magnus with human immunoglobulins. In the mature pool of B cells, protein L exposure resulted in a specific reduction of splenic marginal-zone B cells and peritoneal B-1 cells. Splenic B cells exhibited a skewed light-chain repertoire consistent with the capacity of protein L to bind specific kappa gene products. Remarkably, these two B-cell subsets are implicated in innate B-cell immunity, allowing rapid clearance of pathogens. Thus, the present study reveals a novel mechanism that may be used by some infectious agents to subvert a first line of the host's immune defense.


Sign in / Sign up

Export Citation Format

Share Document