Dicer1 deletion in myeloid-committed progenitors causes neutrophil dysplasia and blocks macrophage/dendritic cell development in mice

Blood ◽  
2012 ◽  
Vol 119 (20) ◽  
pp. 4723-4730 ◽  
Author(s):  
Mir Farshid Alemdehy ◽  
Nicole G. J. A. van Boxtel ◽  
Hans W. J. de Looper ◽  
Iris J. van den Berge ◽  
Mathijs A. Sanders ◽  
...  

Abstract MicroRNAs (miRNAs) have the potential to regulate cellular differentiation programs; however, miRNA deficiency in primary hematopoietic stem cells (HSCs) results in HSC depletion in mice, leaving the question of whether miRNAs play a role in early-lineage decisions un-answered. To address this issue, we deleted Dicer1, which encodes an essential RNase III enzyme for miRNA biogenesis, in murine CCAAT/enhancer-binding protein α (C/EBPA)–positive myeloid-committed progenitors in vivo. In contrast to the results in HSCs, we found that miRNA depletion affected neither the number of myeloid progenitors nor the percentage of C/EBPA–positive progenitor cells. Analysis of gene-expression profiles from wild-type and Dicer1-deficient granulocyte-macrophage progenitors (GMPs) revealed that 20 miRNA families were active in GMPs. Of the derepressed miRNA targets in Dicer1-null GMPs, 27% are normally exclusively expressed in HSCs or are specific for multipotent progenitors and erythropoiesis, indicating an altered gene-expression landscape. Dicer1-deficient GMPs were defective in myeloid development in vitro and exhibited an increased replating capacity, indicating the regained self-renewal potential of these cells. In mice, Dicer1 deletion blocked monocytic differentiation, depleted macrophages, and caused myeloid dysplasia with morphologic features of Pelger-Huët anomaly. These results provide evidence for a miRNA-controlled switch for a cellular program of self-renewal and expansion toward myeloid differentiation in GMPs.

Blood ◽  
2012 ◽  
Vol 119 (11) ◽  
pp. 2510-2522 ◽  
Author(s):  
Stephen B. Ting ◽  
Eric Deneault ◽  
Kristin Hope ◽  
Sonia Cellot ◽  
Jalila Chagraoui ◽  
...  

Abstract The stem cell–intrinsic model of self-renewal via asymmetric cell division (ACD) posits that fate determinants be partitioned unequally between daughter cells to either activate or suppress the stemness state. ACD is a purported mechanism by which hematopoietic stem cells (HSCs) self-renew, but definitive evidence for this cellular process remains open to conjecture. To address this issue, we chose 73 candidate genes that function within the cell polarity network to identify potential determinants that may concomitantly alter HSC fate while also exhibiting asymmetric segregation at cell division. Initial gene-expression profiles of polarity candidates showed high and differential expression in both HSCs and leukemia stem cells. Altered HSC fate was assessed by our established in vitro to in vivo screen on a subcohort of candidate polarity genes, which revealed 6 novel positive regulators of HSC function: Ap2a2, Gpsm2, Tmod1, Kif3a, Racgap1, and Ccnb1. Interestingly, live-cell videomicroscopy of the endocytic protein AP2A2 shows instances of asymmetric segregation during HSC/progenitor cell cytokinesis. These results contribute further evidence that ACD is functional in HSC self-renewal, suggest a role for Ap2a2 in HSC activity, and provide a unique opportunity to prospectively analyze progeny from HSC asymmetric divisions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Risa Okada ◽  
Shin-ichiro Fujita ◽  
Riku Suzuki ◽  
Takuto Hayashi ◽  
Hirona Tsubouchi ◽  
...  

AbstractSpaceflight causes a decrease in skeletal muscle mass and strength. We set two murine experimental groups in orbit for 35 days aboard the International Space Station, under artificial earth-gravity (artificial 1 g; AG) and microgravity (μg; MG), to investigate whether artificial 1 g exposure prevents muscle atrophy at the molecular level. Our main findings indicated that AG onboard environment prevented changes under microgravity in soleus muscle not only in muscle mass and fiber type composition but also in the alteration of gene expression profiles. In particular, transcriptome analysis suggested that AG condition could prevent the alterations of some atrophy-related genes. We further screened novel candidate genes to reveal the muscle atrophy mechanism from these gene expression profiles. We suggest the potential role of Cacng1 in the atrophy of myotubes using in vitro and in vivo gene transductions. This critical project may accelerate the elucidation of muscle atrophy mechanisms.


2006 ◽  
Vol 25 (5) ◽  
pp. 379-395 ◽  
Author(s):  
Gisela Werle-Schneider ◽  
Andreas Wölfelschneider ◽  
Marie Charlotte von Brevern ◽  
Julia Scheel ◽  
Thorsten Storck ◽  
...  

Transcription profiling is used as an in vivo method for predicting the mode-of-action class of nongenotoxic carcinogens. To set up a reliable in vitro short-term test system DNA microarray technology was combined with rat liver slices. Seven compounds known to act as tumor promoters were selected, which included the enzyme inducers phenobarbital, α-hexachlorocyclohexane, and cyproterone acetate; the peroxisome proliferators WY-14,643, dehydroepiandrosterone, and ciprofibrate; and the hormone 17 α-ethinylestradiol. Rat liver slices were exposed to various concentrations of the compounds for 24 h. Toxicology-focused TOXaminer™ DNA microarrays containing approximately 1500 genes were used for generating gene expression profiles for each of the test compound. Hierarchical cluster analysis revealed that (i) gene expression profiles generated in rat liver slices in vitro were specific allowing classification of compounds with similar mode of action and (ii) expression profiles of rat liver slices exposed in vitro correlate with those induced after in vivo treatment (reported previously). Enzyme inducers and peroxisome proliferators formed two separate clusters, confirming that they act through different mechanisms. Expression profiles of the hormone 17 α-ethinylestradiol were not similar to any of the other compounds. In conclusion, gene expression profiles induced by compounds that act via similar mechanisms showed common effects on transcription upon treatment in vivo and in rat liver slices in vitro.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3372-3372
Author(s):  
Ashish R. Kumar ◽  
Robert K. Slany ◽  
Jay L. Hess ◽  
John H. Kersey

Expression profiling has become an important tool for understanding gene deregulation in MLL-fusion leukemias. However, the results of gene profiling experiments are difficult to interpret when applied to leukemia cells because (i) leukemias arise in cells that differ greatly in their gene expression profiles, and (ii) leukemias most often require secondary genetic events in addition to the MLL fusion gene. Two principal model systems have been used to understand the direct effects of MLL-fusion genes. Knock-in models have the advantage of the fusion gene being under control of the physiologic promoter. On the other hand, conditional expression systems offer the ability to conduct short term experiments, permitting the analysis of direct effects on downstream genes. In the present combined-analysis, we used the Affymetrix U74Av2 oligonucleotide microarray to evaluate the effects of the MLL-fusion gene in vivo and in vitro respectively using two closely related MLL fusion genes - MLL-AF9 for knock-in and MLL-ENL for conditional expression. In the MLL-AF9 study, we compared gene expression profiles of bone marrow cells from MLL-AF9 knock-in mice (C57Bl/6, MLL-AF9+/−) to those of age-matched wild type mice (Kumar et. al. 2004, Blood). We used a t-test (p<0.05) to selected genes that showed significant changes in expression levels. In the MLL-ENL study, we transformed murine primary hematopoietic cells with a conditional MLL-ENL vector (MLL-ENL fused to the modified ligand-binding domain of the estrogen receptor) such that the fusion protein was active only in the presence of tamoxifen. We then studied the downstream effects of the fusion protein by comparing gene expression profiles of the cells in the presence and absence of tamoxifen. We used a pair-wise comparison analysis to select genes that showed a change in expression level of 1.5 fold or greater in at least two of three experiments (Zeisig et. al. 2004, Mol. Cell Biol.). Those genes that were up-regulated in both datasets were then compiled together. This list included Hoxa7, Hoxa9 and Meis1. The results for these 3 genes were confirmed by quantitative RT-PCR in both the MLL-AF9-knock-in and the MLL-ENL-conditional-expression systems. The remaining candidate genes in the common up-regulated gene set (not yet tested by quantitative RT-PCR) include protein kinases (Bmx, Mapk3, Prkcabp, Acvrl1, Cask), RAS-associated proteins (Rab7, Rab3b), signal transduction proteins (Notch1, Eat2, Shd, Fpr1), cell membrane proteins (Igsf4), chaperones (Hsp70.2), transcription factors (Isgf3g), proteins with unknown functions (Olfm1, Flot1), and hypothetical proteins. The results of the combined analysis demonstrate that these over-expressions are (i) a direct and sustained effect of the MLL-fusion protein, (ii) are independent of secondary events that might be involved in leukemogensis, and (iii) are independent of the two partner genes that participate in these fusions. The over-expression of a few genes in both the -in vitro and in vivo experimental systems makes these molecules very interesting for further studies, to understand the biology of MLL-fusion leukemias and for development of new therapeutic strategies.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2361-2361
Author(s):  
Hui Yu ◽  
Sheng Zhou ◽  
Geoffrey A. Neale ◽  
Brian P. Sorrentino

Abstract Abstract 2361 HOXB4 is a homeobox transcription factor that can induce hematopoietic stem cell (HSC) expansion both in vivo and in vitro. An interesting feature of HOXB4-induced HSC expansion is that HSC numbers do not exceed normal levels in vivo due to an unexplained physiological capping mechanism. To gain further insight into HOXB4 regulatory signals, we transplanted mice with bone marrow cells that had been transduced with a MSCV-HOXB4-ires-YFP vector and analyzed gene expression profiles in HSC-enriched populations 20 weeks after transplant, a time point at which HSC numbers have expanded to normal levels but no longer increasing beyond physiologic levels. We used Affymetrix arrays to analyze gene expression profiles in bone marrow cells sorted for a Lin−Sca-1+c-Kit+ (LSK), YFP+ phenotype. Using ANOVA, we identified1985 probe sets with >2 fold difference in expression (FDR<, 0.1) relative to a control vector-transduced LSK cells. A cohort of genes was identified that were known positive regulators of HSC self-renewal and proliferation. Hemgn, which we identified in a previous screen as a positive regulator of expansion and a direct transcriptional target of HOXB4, was 3.5 fold up-regulated in HOXB4 transduced LSKs. Other genes known to be important for HSCs survival, self-renewal and differentiation were upregulated to significant levels including N-myc, Meis1, Hoxa9, Hoxa10 and GATA2. Microarray data for selected genes was validated by quantitative real-time PCR on HOXB4 transduced CD34low LSK cells, a highly purified HSC population, obtained from another set of transplanted mice at the 20 week time point. In contrast, other gene expression changes were noted that would potentially limit or decrease stem cell numbers. PRDM16, a set domain transcription factor critical for HSC maintenance and associated with clonal hematopoietic expansions when inadvertently activated as a result of retroviral insertion, was dramatically down-regulated on the expression array and 7.6 fold decreased in the real time PCR assay of CD34low LSK cells. TFG-beta signaling is a well defined inhibitor HSC proliferation and utilize Smad proteins as downstream effectors. Expression of Smad1 and Smad7 were significantly upregulated on the LSK expression array and 8.1 and 3.5 fold up-regulated by qPCR in CD34low LSK cells. Another potential counter-regulatory signal was down regulation of Bcl3 mRNA, a potential anti-apoptotic effector in HSCs. We hypothesize that the HOXB4 expansion program involves activation of genes that lead to increased HSC numbers with later activation of counter-regulatory signals that limit expansion to physiologic numbers of HSCs in vivo. We are now examining how this program changes at various time points after transplantation and hypothesize the capping limits are set at relatively later time points during reconstitution. We also are studying the functional effects of these gene expression changes, and in particular, whether enforced expression of HOXB4 and PRMD16 will result in uncontrolled HSC proliferation and/or leukemia. Disclosures: No relevant conflicts of interest to declare.


2007 ◽  
Vol 204 (9) ◽  
pp. 2199-2211 ◽  
Author(s):  
K. Kai McKinstry ◽  
Susanne Golech ◽  
Won-Ha Lee ◽  
Gail Huston ◽  
Nan-Ping Weng ◽  
...  

The majority of highly activated CD4 T cell effectors die after antigen clearance, but a small number revert to a resting state, becoming memory cells with unique functional attributes. It is currently unclear when after antigen clearance effectors return to rest and acquire important memory properties. We follow well-defined cohorts of CD4 T cells through the effector-to-memory transition by analyzing phenotype, important functional properties, and gene expression profiles. We find that the transition from effector to memory is rapid in that effectors rested for only 3 d closely resemble canonical memory cells rested for 60 d or longer in the absence of antigen. This is true for both Th1 and Th2 lineages, and occurs whether CD4 T cell effectors rest in vivo or in vitro, suggesting a default pathway. We find that the effector–memory transition at the level of gene expression occurs in two stages: a rapid loss of expression of a myriad of effector-associated genes, and a more gradual gain of expression of a cohort of genes uniquely associated with memory cells rested for extended periods.


2016 ◽  
Vol 28 (3) ◽  
pp. 278 ◽  
Author(s):  
Su-Jin Cho ◽  
Kyeong-Lim Lee ◽  
Yu-Gon Kim ◽  
Dong-Hoon Kim ◽  
Jae-Gyu Yoo ◽  
...  

We compared the nuclear maturation status and gene-expression profiles of canine cumulus cells (CCs) derived from cumulus–oocyte complexes (COCs) that were spontaneously ovulated versus those that were matured in vitro. Cumulus–oocyte complexes were retrieved from uteri by surgical flushing (after spontaneous ovulation) or by ovariectomy follicle aspiration and in vitro maturation. The objective of Experiment 1 was to investigate the nuclear maturation status of in vivo- versus in vitro-matured oocytes. The objective of Experiment 2 was to compare gene-expression profiles of CCs derived from in vivo- versus in vitro-matured COCs. Genes analysed are related to cell maturation, development and apoptosis, including GDF9, MAPK1, PTX3, CX43, Bcl2 and BAX; mRNA expression for all of these genes, except for GDF9, differed (P < 0.05) between in vivo- and in vitro-matured CCs. In conclusion, we found that gene-expression profiles are related to the quality of CCs and therefore posit that monitoring gene expression could be a useful strategy to guide attempts to improve in vitro culture systems.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3702-3702
Author(s):  
Samisubbu R Naidu ◽  
Maegan L. Capitano ◽  
Scott Cooper ◽  
Xinxin Huang ◽  
Hal E. Broxmeyer

Chromatin remodeling complexes facilitate gene expression and control cell fate decisions. The ATPase subunit of chromatin remodeling complex BRG1 is essential for stem cell function, but the role of its paralog Brm remains essentially unknown. To assess a role(s) for Brm in hematopoietic cell regulation in vivo, we studied hematopoietic stem (HSCs) and progenitor cells (HPCs) in bone marrow (BM) of Brm -/- vs. wildtype (WT) control mice. While BM from Brm -/- mice contain increased numbers of rigorously-defined phenotypic populations of long- and short-term repopulating HSCs and granulocyte macrophage progenitors (GMPs) and increased numbers and cycling status of functional HPC (assessed by CFU-GM, BFU-E, and CFU-GEMM colony assays), they were defective in self-renewal capacity upon in vivo serial transplantation using congenic mice (CD45.2+ donor cells, CD45.1+ competitor cells, and F1 (CD45.2+/CD45.1+) recipient mice). Increased numbers of HSCs from Brm-/- BM failed to show competitive advantage over wild type (WT) control BM cells in primary (1°) transplantation in lethally irradiated mice (based on month 4 donor cell chimerism and phenotypically defined HSC numbers). Moreover, 2° and 3° engraftment at 4 months post transplantation each, a measure of HSC self-renewal capacity, revealed much reduced engraftment of donor Brm -/- BM cell chimerism and HSC numbers compared to the extensive 2° and 3° engraftment of control WT BM. No significant differences in myeloid/lymphoid ratios were noted in 1° or 2° engrafted mice, suggesting no differentiation lineage bias of donor Brm -/- BM cells. This demonstrates a critical role for Brm in controlling in vivo self-renewal of mouse BM HSCs. Valine [(2S)-2 amino-3 methylbutanoic acid (C5H11N02)] is implicated in hematopoietic regulation, since depleting dietary valine permitted non-myeloablative mouse HSC transplantation (Taya et. al. Science 354:1152-1155, 2016). Metabolic analysis of lineage negative (lin-) cells demonstrated that valine, but not leucine, levels were very highly elevated in Brm -/- BM cells, thus linking intracellular valine levels with Brm expression. Exogenously added valine significantly increased basal oxygen consumption rates of both total WT BM and WT lin- cells, but not of total or lin-Brm -/- BM cells in vitro (via Seahorse machine analysis). To study effects of valine on HPCs, we assessed the addition of exogenously added valine on mouse BM and human cord blood (CB) cells cultured in the presence of cytokines with either non-dialyzed or dialyzed fetal bovine serum (FBS). Valine, but not leucine, dose-dependently enhanced HPC (CFU-GM, BFU-E, and CFU-GEMM) colony formation and secondary replating capacity of cytokine stimulated CFU-GM and CFU-GEMM derived colonies of normal mouse BM cells in vitro in presence of non-dialyzed FBS; additional enhanced valine effects were noted when dialyzed FBS (lacking valine and other amino acids) was used. Valine also enhanced mouse BM HPC survival in vitro in context of delayed addition of growth factors, and cytokine stimulated (SCF, FL, TPO) ex-vivo expansion of normal mouse BM HSCs and HPCs. Valine enhancement of the above noted functional mouse BM HPC assays in the presence of dialyzed FBS was also apparent with low density and CD34+ purified CB cells, demonstrating that valine effects are not species specific. Our results suggest that valine is an enhancing factor for HSC maintenance of self-renewal capacity and HPC proliferation, and that Brm gene expression limits intracellular valine levels, thereby controlling HSC self-renewal and HPC proliferation. This information is of potential use for future translation to modulate self-renewal of HSCs and survival and proliferation of HPCs for clinical advantage. Disclosures No relevant conflicts of interest to declare.


mSphere ◽  
2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Ting Y. Wong ◽  
Jesse M. Hall ◽  
Evan S. Nowak ◽  
Dylan T. Boehm ◽  
Laura A. Gonyar ◽  
...  

ABSTRACTBordetella pertussiscauses the disease whooping cough through coordinated control of virulence factors by theBordetellavirulence gene system. Microarrays and, more recently, RNA sequencing (RNA-seq) have been used to describein vitrogene expression profiles ofB. pertussisand other pathogens. In previous studies, we have analyzed thein vitrogene expression profiles ofB. pertussis, and we hypothesize that the infection transcriptome profilein vivois significantly different from that under laboratory growth conditions. To study the infection transcriptome ofB. pertussis, we developed a simple filtration technique for isolation of bacteria from infected lungs. The work flow involves filtering the bacteria out of the lung homogenate using a 5-μm-pore-size syringe filter. The captured bacteria are then lysed to isolate RNA for Illumina library preparation and RNA-seq analysis. Upon comparing thein vitroandin vivogene expression profiles, we identified 351 and 255 genes as activated and repressed, respectively, during murine lung infection. As expected, numerous genes associated with virulent-phase growth were activated in the murine host, including pertussis toxin (PT), the PT secretion apparatus, and the type III secretion system. A significant number of genes encoding iron acquisition and heme uptake proteins were highly expressed during infection, supporting iron acquisition as critical forB. pertussissurvivalin vivo. Numerous metabolic genes were repressed during infection. Overall, these data shed light on the gene expression profile ofB. pertussisduring infection, and this method will facilitate efforts to understand how this pathogen causes infection.IMPORTANCEIn vitrogrowth conditions for bacteria do not fully recapitulate the host environment. RNA sequencing transcriptome analysis allows for the characterization of the infection gene expression profiles of pathogens in complex environments. Isolation of the pathogen from infected tissues is critical because of the large amounts of host RNA present in crude lysates of infected organs. A filtration method was developed that enabled enrichment of the pathogen RNA for RNA-seq analysis. The resulting data describe the “infection transcriptome” ofB. pertussisin the murine lung. This strategy can be utilized for pathogens in other hosts and, thus, expand our knowledge of what bacteria express during infection.


Sign in / Sign up

Export Citation Format

Share Document