scholarly journals Tyrosine kinome sequencing of pediatric acute lymphoblastic leukemia: a report from the Children's Oncology Group TARGET Project

Blood ◽  
2013 ◽  
Vol 121 (3) ◽  
pp. 485-488 ◽  
Author(s):  
Mignon L. Loh ◽  
Jinghui Zhang ◽  
Richard C. Harvey ◽  
Kathryn Roberts ◽  
Debbie Payne-Turner ◽  
...  

Abstract One recently identified subtype of pediatric B-precursor acute lymphoblastic leukemia (ALL) has been termed BCR-ABL1–like or Ph-like because of similarity of the gene expression profile to BCR-ABL1 positive ALL suggesting the presence of lesions activating tyrosine kinases, frequent alteration of IKZF1, and poor outcome. Prior studies demonstrated that approximately half of these patients had genomic lesions leading to CRLF2 overexpression, with half of such cases harboring somatic mutations in the Janus kinases JAK1 and JAK2. To determine whether mutations in other tyrosine kinases might also occur in ALL, we sequenced the tyrosine kinome and downstream signaling genes in 45 high-risk pediatric ALL cases with either a Ph-like gene expression profile or other alterations suggestive of activated kinase signaling. Aside from JAK mutations and 1 FLT3 mutation, no somatic mutations were found in any other tyrosine kinases, suggesting that alternative mechanisms are responsible for activated kinase signaling in high-risk ALL.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2752-2752 ◽  
Author(s):  
Jinghui Zhang ◽  
Charles Mullighan ◽  
Richard Harvey ◽  
William L. Carroll ◽  
I-Ming L. Chen ◽  
...  

Abstract Abstract 2752 Introduction: We recently identified a poor prognostic subgroup of pediatric BCR-ABL1 negative ALL patients characterized by deletion of IKZF1 (encoding the lymphoid transcription factor IKAROS) and a gene expression signature similar to BCR-ABL1 positive ALL, raising the possibility of activated tyrosine kinase signaling within this leukemia subtype. Targeted sequencing revealed activating sequence mutations in the Janus tyrosine kinases (JAK1 (N=3), JAK2 (N=17) and JAK3 (N=1)) in 21 of 187 (11.2%) BCR-ABL1 negative, high-risk pediatric ALL cases. All 21 cases with JAK mutations had the BCR-ABL1-like expression profile, accounting for about 50% of the cases with this phenotype, suggesting that mutations in JAK kinases account for some, but not all, cases with this distinctive profile. To determine whether mutations in other kinases might also be associated with this distinctive gene expression profile, we sequenced 126 genes encoding tyrosine kinases and mediators of kinase signaling in an additional 46 high-risk ALL cases with a BCR-ABL1-like expression profile. The genes sequenced included the entire tyrosine kinome. Methods: The 46 leukemia specimens studied were from patients enrolled on COG clinical trials for high risk ALL (P9906, n=23 and AALL0232, n=23), with risk defined primarily by elevated WBC and/or age > 10 years. All 46 cases had a BCR-ABL1 like expression profile. The 23 P9906 cases all lacked JAK mutations, while 3 of the 23 AALL0232 cases were found to have activating JAK mutations (JAK1 (N=1), JAK2 (N=2)). The entire coding region and UTRs of each gene was amplified by PCR of whole genome amplified genomic DNA, and subjected to Sanger sequencing. A CEPH sample (NA19085) was also included as a normal control DNA. Results: A total of 1,149,117 bases were sequenced bi-directionally for each sample; 96% of the targeted bases were covered with high-quality sequencing data. We identified a total of 2,302 variations predicted to change protein sequences, 173 of which are novel, putative variations after removing germline variations found in dbSNP, The Cancer Genome Atlas Project (TCGA) and the normal CEPH sample NA19085 in this study. For each novel variation, the tumor DNA was resequenced and matching normal DNA was sequenced to validate the original observation and to distinguish somatic from inherited variants. The results show that 105 variations are germline, 20 are false positives while the remaining markers failed in validation assay. Aside from 1 FLT3 mutation (23aainsN609), there are no confirmed somatic mutations in any other tyrosine kinase genes. Conclusion: Aside from JAK mutations, somatically acquired sequence mutations in tyrosine kinase genes are rare in children with high risk ALL and BCR-ABL1 like gene expression profiles. We are pursuing the identification of alternative mechanisms for kinase activation that might explain the distinctive expression profile observed in these cases. Disclosures: Relling: St. Jude Children's Research Hospital: Employment, Patents & Royalties; Enzon Pharmaceuticals: Research Funding. Hunger:bristol myers squibb: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; eisai: Honoraria, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 691-691 ◽  
Author(s):  
Charles G. Mullighan ◽  
Christopher B. Miller ◽  
Xiaoping Su ◽  
Ina Radtke ◽  
James Dalton ◽  
...  

Abstract In a previous gene expression profiling study of acute lymphoblastic leukemia (ALL), we identified a novel subtype of B-progenitor ALL (4.9% of 284 cases) with a unique gene expression profile, aberrant expression of CD2 and the absence of recurring cytogenetic abnormalities (Cancer Cell2002;1:133). Efforts to identify rearrangement or mutation of many of the top-ranked genes in the novel expression signature failed to identify a causative lesion. To further investigate the genetic basis of this subtype, we performed integrated genomic analysis of 277 ALL cases. Affymetrix 250k Sty and Nsp SNP microarrays were used in all cases, and Affymetrix U133A gene expression profiles were obtained on 183 of the cases. Unsupervised clustering of gene expression data identified 16 cases of the novel subtype, including all of the 14 previously defined cases. Remarkably, focal mono-allelic deletions of the ETS family member ERG (v-ets erythroblastosis virus E26 oncogene homolog) were detected by genome-wide copy number analysis in 11/16 (69%) of the novel cases, but not in any other ALL subtype. Extensive analysis failed to reveal evidence of translocations involving the altered ERG allele, indicating that these are intragenic deletions limited to ERG. The ERG deletions involved a subset of exons (ERG isoform 1 exons 3–7 or 3–9) resulting in the expression of internally deleted ERG transcripts with altered reading frames predicted to produce a prematurely truncated N-terminal protein fragment. However, using an alternative translational start site 5′ to exon 10, the transcripts also encode a ∼28kDa C-terminal ERG fragment that contains the entire C-terminal ETS DNA-binding and transactivation domains, but lacks all N-terminal domains. Importantly, western blot analysis of primary leukemic blasts revealed expression of only the 28kDa C-terminal ERG protein, along with full length ERG expressed from the retained wild type allele. Remarkably, the C-terminal ERG protein was also detected in 4 of 5 novel ALL cases that lacked detectable ERG deletions, but not in any other ALL subtype. In luciferase reporter assays, this aberrant ERG protein acts as a competitive inhibitor of wild type ERG. Analysis of a second cohort of 35 B-progenitor ALL cases lacking recurring cytogenetic abnormalities identified two cases with ERG deletions and a third expressing the aberrant ERG protein, all of which had the novel gene expression profile. Sequencing of ERG in 252 ALL cases identified only one case with an ERG mutation that resulted in a frameshift in the ETS domain. This case did not share the novel signature nor express the aberrant C-terminal ERG protein. Finally, in an analysis of 37 acute leukemia cell lines, the B-progenitor ALL line NALM-6 was found to harbor a focal, internally truncating ERG deletion, expressed the aberrant ERG protein, and shared the novel gene expression profile, thus identifying it as a model of this novel ALL subtype. These data establish focal ERG deletions as the genetic lesion underlying a novel subtype of ALL, and have expanded the genetic mechanisms that lead to the dysregulation of ERG from chromosomal translocations that result in enhanced transcriptional activity, to deletions that generate dominant negative forms of the transcription factor.


Leukemia ◽  
2003 ◽  
Vol 17 (11) ◽  
pp. 2234-2237 ◽  
Author(s):  
C A Scrideli ◽  
G Cazzaniga ◽  
G Fazio ◽  
L Pirola ◽  
A Callegaro ◽  
...  

2017 ◽  
Vol 1 (20) ◽  
pp. 1749-1759 ◽  
Author(s):  
Sheryl M. Gough ◽  
Liat Goldberg ◽  
Marbin Pineda ◽  
Robert L. Walker ◽  
Yuelin J. Zhu ◽  
...  

Key Points An NUP98-PHF23 fusion collaborates with acquired Bcor and Jak/Stat mutations to produce a pro–B-1 ALL. Gene expression profile of murine pro–B-1 ALL resembles that of a subset of human ALL, suggesting some human ALLs arise from pro–B-1 B cells.


2011 ◽  
Vol 3 (2s) ◽  
pp. 3 ◽  
Author(s):  
Sabina Chiaretti ◽  
Monica Messina ◽  
Simona Tavolaro ◽  
Robin Foà

Until recently, few molecular aberrations were recognized in T-cell acute lymphoblastic leukemia (T-ALL) and they were restricted to aberrations involving the T-cell receptor (TCR). The introduction of powerful technologies has allowed to identify novel rearrangements. In this context, we have performed a gene expression profiling analysis on a relatively large cohort (n=69) of adult patients with a diagnosis of T-ALL. By unsupervised clustering, we identified 5 subgroups. Of these, one branch included 7 patients (10%) whose gene expression profile resembled that of AML. These cases were characterized by the overexpression of a large set of myeloid-related genes, as well as of miR-223. Finally, these patients appear to have an unfavorable clinical course. This newly identified subset of T-ALL cases partly resembles the so-called ETP (early T-precursor) pediatric subgroup: both age groups have in fact a peculiar gene expression profile, an unfavorable outcome and an incidence of about 10%.


2014 ◽  
Vol 55 (8) ◽  
pp. 1751-1757 ◽  
Author(s):  
Vanessa S. Silveira ◽  
Bruno M. R. Freire ◽  
Kleiton S. Borges ◽  
Augusto F. Andrade ◽  
Gustavo A. V. Cruzeiro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document