Clinical outcome of patients with follicular lymphoma receiving chemoimmunotherapy in the PRIMA study is not affected by FCGR3A and FCGR2A polymorphisms

Blood ◽  
2012 ◽  
Vol 120 (13) ◽  
pp. 2650-2657 ◽  
Author(s):  
Hervé Ghesquières ◽  
Guillaume Cartron ◽  
John Francis Seymour ◽  
Marie-Hélène Delfau-Larue ◽  
Fritz Offner ◽  
...  

Abstract In patients with follicular lymphoma treated with single-agent rituximab, single nucleotide polymorphisms in the FCGR3A gene are known to influence response and progression-free survival. The prognostic role of FCGR3A and FCGR2A polymorphisms in patients with follicular lymphoma treated with rituximab and chemotherapy combination remains controversial and has not been evaluated in the context of rituximab maintenance. FCGR3A and FCGR2A single nucleotide polymorphisms were evaluated in, respectively, 460 and 455 patients treated in the PRIMA study to investigate whether these were associated with response rate and patient outcome after rituximab chemotherapy induction and 2-year rituximab maintenance. In this representative patient cohort, complete and unconfirmed complete responses after rituximab chemotherapy were observed in 65%, 67%, 66% (P = .86) and 60%, 72%, 66% (P = .21) of FCGR3A VV, VF, FF and FCGR2A HH, HR, RR carriers, respectively. After 2 years of rituximab maintenance (or observation), response rates did not differ among the different genotypes. Progression-free survival measured from either treatment initiation or randomization to observation or maintenance was not influenced by these polymorphisms. These data indicate that FCGR3A and FCGR2A polymorphisms do not influence response rate and outcome when rituximab is combined with chemotherapy or used as maintenance treatment. The PRIMA study is registered at www.clinicaltrials.gov as NCT00140582.

Blood ◽  
2006 ◽  
Vol 108 (10) ◽  
pp. 3295-3301 ◽  
Author(s):  
Marinus H. J. van Oers ◽  
Richard Klasa ◽  
Robert E. Marcus ◽  
Max Wolf ◽  
Eva Kimby ◽  
...  

Abstract We evaluated the role of rituximab (R) both in remission induction and maintenance treatment of relapsed/resistant follicular lymphoma (FL). A total of 465 patients were randomized to induction with 6 cycles of cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) (every 3 weeks) or R-CHOP (R: 375 mg/m2 intravenously, day 1). Those in complete remission (CR) or partial remission (PR) were randomized to maintenance with R (375 mg/m2 intravenously once every 3 months for a maximum of 2 years) or observation. R-CHOP induction yielded an increased overall response rate (CHOP, 72.3%; R-CHOP, 85.1%; P < .001) and CR rate (CHOP, 15.6%; R-CHOP, 29.5%; P < .001). Median progression-free survival (PFS) from first randomization was 20.2 months after CHOP versus 33.1 months after R-CHOP (hazard ratio [HR], 0.65; P < .001). Rituximab maintenance yielded a median PFS from second randomization of 51.5 months versus 14.9 months with observation (HR, 0.40; P < .001). Improved PFS was found both after induction with CHOP (HR, 0.30; P < .001) and R-CHOP (HR, 0.54; P = .004). R maintenance also improved overall survival from second randomization: 85% at 3 years versus 77% with observation (HR, 0.52; P = .011). This is the first trial showing that in relapsed/resistant FL rituximab maintenance considerably improves PFS not only after CHOP but also after R-CHOP induction.


2021 ◽  
pp. 172460082110111
Author(s):  
Erika Korobeinikova ◽  
Rasa Ugenskiene ◽  
Ruta Insodaite ◽  
Viktoras Rudzianskas ◽  
Jurgita Gudaitiene ◽  
...  

Background: Genetic variations in oxidative stress-related genes may alter the coded protein level and impact the pathogenesis of breast cancer. Methods: The current study investigated the associations of functional single nucleotide polymorphisms in the NFE2L2, HMOX1, P21, TXNRD2, and ATF3 genes with the early-stage breast cancer clinicopathological characteristics and disease-free survival, metastasis-free survival, and overall survival. A total of 202 Eastern European (Lithuanian) women with primary I–II stage breast cancer were involved. Genotyping of the single nucleotide polymorphisms was performed using TaqMan single nucleotide polymorphisms genotyping assays. Results: The CA+AA genotypes of P21 rs1801270 were significantly less frequent in patients with lymph node metastasis and larger tumor size ( P=0.041 and P=0.022, respectively). The TT genotype in ATF3 rs3125289 had significantly lower risk of estrogen receptor (ER), progesterone receptor (PR) negative, and human epidermal growth factor receptor 2 (HER2) positive status ( P=0.023, P=0.046, and P=0.040, respectively). In both, univariate and multivariate Cox analysis, TXNRD2 rs1139793 GG genotype vs. GA+AA was a negative prognostic factor for disease-free survival (multivariate hazard ratio (HR) 2.248; P=0.025) and overall survival (multivariate HR 2.248; P=0.029). The ATF3 rs11119982 CC genotype in the genotype model was a negative prognostic factor for disease-free survival (multivariate HR 5.878; P=0.006), metastasis-free survival (multivariate HR 4.759; P=0.018), and overall survival (multivariate HR 3.280; P=0.048). Conclusion: Our findings suggest that P21 rs1801270 is associated with lymph node metastasis and larger tumor size, and ATF3 rs3125289 is associated with ER, PR, and HER2 status. Two potential, novel, early-stage breast cancer survival biomarkers, TXNRD2 rs1139793 and ATF3 rs11119982, were detected. Further investigations are needed to confirm the results of the current study.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Erika Calvano Küchler ◽  
Agnes Schröder ◽  
Vinicius Broska Teodoro ◽  
Ute Nazet ◽  
Rafaela Scariot ◽  
...  

Abstract Background This study aimed to investigate, if different physiological concentrations of vitamin D (25(OH)D3) and single nucleotide polymorphisms in vitamin D receptor (VDR) gene have an impact on gene expression in human periodontal ligament (hPDL) fibroblasts induced by simulated orthodontic compressive strain. Methods A pool of hPDL fibroblasts was treated in absence or presence of 25(OH)D3 in 3 different concentrations (10, 40 and 60 ng/ml). In order to evaluate the role of single nucleotide polymorphisms in the VDR gene, hPDL fibroblasts from 9 patients were used and treated in absence or presence of 40 ng/ml 25(OH)D3. Each experiment was performed with and without simulated orthodontic compressive strain. Real-time PCR was used for gene expression and allelic discrimination analysis. Relative expression of dehydrocholesterol reductase (DHCR7), Sec23 homolog A, amidohydrolase domain containing 1 (AMDHD1), vitamin D 25-hydroxylase (CYP2R1), Hydroxyvitamin D-1-α hydroxylase, receptor activator of nuclear factor-κB ligand (RANKL), osteoprotegerin (OPG), cyclooxygenase-2 (COX-2) and interleukin-6 (IL6) was assessed. Three single nucleotide polymorphisms in VDR were genotyped. Parametric or non-parametric tests were used with an alpha of 5%. Results RANKL, RANKL:OPG ratio, COX-2, IL-6, DHCR7, CYP2R1 and AMDHD1 were differentially expressed during simulated orthodontic compressive strain (p < 0.05). The RANKL:OPG ratio was downregulated by all concentrations (10 ng/ml, 40 ng/ml and 60 ng/ml) of 25(OH)D3 (mean = 0.96 ± 0.68, mean = 1.61 ± 0.66 and mean = 1.86 ± 0.78, respectively) in comparison to the control (mean 2.58 ± 1.16) (p < 0.05). CYP2R1 gene expression was statistically modulated by the different 25(OH)D3 concentrations applied (p = 0.008). Samples from individuals carrying the GG genotype in rs739837 presented lower VDR mRNA expression and samples from individuals carrying the CC genotype in rs7975232 presented higher VDR mRNA expression (p < 0.05). Conclusions Simulated orthodontic compressive strain and physiological concentrations of 25(OH)D3 seem to regulate the expression of orthodontic tooth movement and vitamin-D-related genes in periodontal ligament fibroblasts in the context of orthodontic compressive strain. Our study also suggests that single nucleotide polymorphisms in the VDR gene regulate VDR expression in periodontal ligament fibroblasts in the context of orthodontic compressive strain.


2013 ◽  
Vol 57 (11) ◽  
pp. 5658-5664 ◽  
Author(s):  
Soo-Jin Yang ◽  
Nagendra N. Mishra ◽  
Aileen Rubio ◽  
Arnold S. Bayer

ABSTRACTSingle nucleotide polymorphisms (SNPs) within themprFopen reading frame (ORF) have been commonly observed in daptomycin-resistant (DAPr)Staphylococcus aureusstrains. Such SNPs are usually associated with a gain-in-function phenotype, in terms of either increased synthesis or enhanced translocation (flipping) of lysyl-phosphatidylglycerol (L-PG). However, it is unclear if suchmprFSNPs are causal in DAPrstrains or are merely a biomarker for this phenotype. In this study, we used an isogenic set ofS. aureusstrains: (i) Newman, (ii) its isogenic ΔmprFmutant, and (iii) several intransplasmid complementation constructs, expressing either a wild-type or point-mutated form of themprFORF cloned from two isogenic DAP-susceptible (DAPs)-DAPrstrain pairs (616-701 and MRSA11/11-REF2145). Complementation of the ΔmprFstrain with singly point-mutatedmprFgenes (mprFS295LormprFT345A) revealed that (i) individual and distinct point mutations within themprFORF can recapitulate phenotypes observed in donor strains (i.e., changes in DAP MICs, positive surface charge, and cell membrane phospholipid profiles) and (ii) these gain-in-function SNPs (i.e., enhanced L-PG synthesis) likely promote reduced DAP binding toS. aureusby a charge repulsion mechanism. Thus, for these two DAPrstrains, the definedmprFSNPs appear to be causally related to this phenotype.


Author(s):  
Jun Wei Ng ◽  
Eric Tzyy Jiann Chong ◽  
Ping-Chin Lee

Abstract: Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and recently has become a serious global pandemic. Age, gender, and comorbidities are known to be common risk factors for severe COVID-19 but are not enough to fully explain the magnitude of their effect on the risk of severity of the disease. Single nucleotide polymorphisms (SNPs) in several genes have been reported as a genetic factor contributing to COVID-19 severity. This comprehensive review focuses on the association between SNPs in four important genes and COVID-19 severity in a global aspect. We discuss a total of 39 SNPs in this review: five SNPs in the ABO gene, nine SNPs in the angiotensin-converting enzyme 2 (ACE2) gene, 19 SNPs in the transmembrane protease serine 2 (TMPRSS2) gene, and six SNPs in the toll-like receptor 7 (TLR7) gene. These SNPs data could assist in monitoring an individual's risk of severe COVID-19 disease, and therefore personalized management and pharmaceutical treatment could be planned in COVID-19 patients.


Sign in / Sign up

Export Citation Format

Share Document