scholarly journals Adenosine production by human B cells and B cell–mediated suppression of activated T cells

Blood ◽  
2013 ◽  
Vol 122 (1) ◽  
pp. 9-18 ◽  
Author(s):  
Zenichiro Saze ◽  
Patrick J. Schuler ◽  
Chang-Sook Hong ◽  
Dongmei Cheng ◽  
Edwin K. Jackson ◽  
...  

Key PointsProducts of ATP hydrolysis, 5′AMP, and adenosine orchestrate the dual regulatory activity of B cells. B cells emerge as a key regulatory component of T cell–B cell interactions, which are under environmental control.

Blood ◽  
1993 ◽  
Vol 81 (12) ◽  
pp. 3343-3349 ◽  
Author(s):  
BK Link ◽  
GJ Weiner

Abstract Bispecific monoclonal antibodies (bsabs) recognizing both CD3 and a tumor antigen can redirect T-cell-mediated cytotoxicity toward cells bearing that antigen. Such bsabs have been shown to be more effective than monospecific monoclonal antibodies (MoAbs) at preventing tumor growth in animal models of B-cell malignancy. The current studies describe the production and preliminary evaluation of a bsab designed to induce the lysis of malignant human B cells by human T cells. The bsab was obtained from a hybrid-hybridoma cell line produced by fusing OKT3-secreting hybridoma cells with hybridoma cells that secrete 1D10. 1D10 is an MoAb that recognizes an antigen found on a majority of malignant human B cells that has not been detected to a significant degree on normal resting or activated lymphocytes. High performance liquid chromatography (HPLC) was used to separate bsab from monospecific antibodies that were also present in the hybrid-hybridoma antibody product. The bsab was then evaluated in vitro for its ability to induce lysis of malignant B cells by activated T cells. The bsab consistently induced extensive lysis in vitro of 1D10 (+) cells, including both cell lines and cells obtained from patients with a variety of B-cell malignancies. No such effect was seen with activated T cells alone or activated T cells with monospecific antibody. No increased lysis was seen with 1D10 (-) cell lines. The bsab also mediated lysis of malignant B cells by autologous T cells. We conclude bsab containing an OKT3 arm and a 1D10 arm can induce T-cell-mediated lysis in a manner that is both potent and specific. This supports further evaluation of this bsab as a potential immunotherapy of B-cell malignancy.


Blood ◽  
1993 ◽  
Vol 81 (12) ◽  
pp. 3343-3349 ◽  
Author(s):  
BK Link ◽  
GJ Weiner

Bispecific monoclonal antibodies (bsabs) recognizing both CD3 and a tumor antigen can redirect T-cell-mediated cytotoxicity toward cells bearing that antigen. Such bsabs have been shown to be more effective than monospecific monoclonal antibodies (MoAbs) at preventing tumor growth in animal models of B-cell malignancy. The current studies describe the production and preliminary evaluation of a bsab designed to induce the lysis of malignant human B cells by human T cells. The bsab was obtained from a hybrid-hybridoma cell line produced by fusing OKT3-secreting hybridoma cells with hybridoma cells that secrete 1D10. 1D10 is an MoAb that recognizes an antigen found on a majority of malignant human B cells that has not been detected to a significant degree on normal resting or activated lymphocytes. High performance liquid chromatography (HPLC) was used to separate bsab from monospecific antibodies that were also present in the hybrid-hybridoma antibody product. The bsab was then evaluated in vitro for its ability to induce lysis of malignant B cells by activated T cells. The bsab consistently induced extensive lysis in vitro of 1D10 (+) cells, including both cell lines and cells obtained from patients with a variety of B-cell malignancies. No such effect was seen with activated T cells alone or activated T cells with monospecific antibody. No increased lysis was seen with 1D10 (-) cell lines. The bsab also mediated lysis of malignant B cells by autologous T cells. We conclude bsab containing an OKT3 arm and a 1D10 arm can induce T-cell-mediated lysis in a manner that is both potent and specific. This supports further evaluation of this bsab as a potential immunotherapy of B-cell malignancy.


1972 ◽  
Vol 136 (4) ◽  
pp. 737-760 ◽  
Author(s):  
Marc Feldmann

The mechanism of interaction of T and B lymphocytes was investigated in an in vitro hapten carrier system using culture chambers with two compartments separated by a cell impermeable nucleopore membrane. Because specific cell interaction occurred efficiently across this membrane, contact of T and B lymphocytes was not essential for cooperation which must have been mediated by a subcellular component or "factor." By using different lymphoid cell populations in the lower culture chamber and activated thymus cells in the upper chamber (with antigen present in both), it was found that the antigen-specific mediator acted indirectly on B cells, through the agency of macrophages. Macrophages which had been cultured in the presence of activated T cells and antigen acquired the capacity to specifically induce antibody responses in B cell-containing lymphoid populations. Trypsinization of these macrophages inhibited their capacity to induce immune responses, indicating that the mediator of cell cooperation is membrane bound. By using antisera to both the haptenic and carrier determinants of the antigen as blocking reagents, it was demonstrated that the whole antigen molecule was present on the surface of macrophages which had been exposed to activated T cells and antigen. Because specifically activated T cells were essential a component of the antigen-specific mediator must be derived from these cells. By using anti-immunoglobulin sera as inhibitors of the binding of the mediator to macrophages, the T cell component was indeed found to contain both κ- and µ-chains and was thus presumably a T cell-derived immunoglobulin. It was proposed that cell cooperation is mediated by complexes of T cell IgM and antigen, bound to the surface of macrophage-like cells, forming a lattice of appropriately spaced antigenic determinants. B cells become immunized by interacting with this surface. With this mechanism of cell cooperation, the actual pattern of antigen-B cell receptor interactions in immunization would be the same with both thymus-dependent and independent antigens. An essential feature of the proposed mechanism of cell cooperation is that macrophage-B cell interaction must occur at an early stage of the antibody response, a concept which is supported by many lines of evidence. Furthermore this mechanism of cell interaction can be elaborated to explain certain phenomena such as the highly immunogenic macrophage-bound antigen, antigenic competition, the distinction between immunity and tolerance in B lymphocytes, and the possible mediation of tolerance by T lymphocytes.


1993 ◽  
Vol 177 (4) ◽  
pp. 1215-1219 ◽  
Author(s):  
A C Lalmanach-Girard ◽  
T C Chiles ◽  
D C Parker ◽  
T L Rothstein

In comparison to B cell stimulation mediated by surface immunoglobulin (Ig) antigen receptor ligation, little is known about the intracellular events associated with T cell-dependent B cell responses. A model for the efferent phase of T cell-B cell interaction was used to examine the capacity of activated T cells to trigger nuclear expression of the trans-acting transcription factor, NF-kappa B, in B cells. Fixed, activated, but not fixed, resting Th2 cells were found to induce increased binding activity for a kappa B site-containing oligonucleotide in a time-dependent manner. This induction of NF-kappa B was eliminated by an antibody directed against a 39-kD cell interaction protein on activated T cells as well as by a soluble form of B cell CD40. Of particular relevance to intracellular signaling, NF-kappa B induction was not diminished by prior depletion of B cell protein kinase C (PKC) with phorbol myristate acetate. These results strongly suggest that T cell-dependent B cell stimulation is associated with NF-kappa B induction via p39-CD40 interaction and that this is brought about by non-PKC dependent signaling, in marked contrast to the previously documented requirement for PKC in sIg receptor-mediated stimulation. This suggest that NF-kappa B responds to more than one receptor-mediated intracellular signaling pathway in B cells and may be part of a "final common pathway" for B cell stimulation.


1984 ◽  
Vol 160 (5) ◽  
pp. 1597-1602 ◽  
Author(s):  
L K Jung ◽  
T Hara ◽  
S M Fu

A monoclonal antibody, AT-1, is shown to precipitate a p60-65 molecule identical to the Tac antigen. With AT-1, the expression of IL-2 receptors by normal activated human B cells from peripheral blood and tonsils is documented by biosynthetic and immunofluorescence studies. AT-1 precipitated a p60-65 protein from [35S]methionine-labeled activated B cells, similar to that from activated T cells. The interleukin 2 (IL-2) receptor appeared shortly after activation with anti-IgM and B cell-stimulatory factor(s). Its expression reached its peak at 60-72 h with approximately 50% of the B blasts stained by AT-1. Other modes of activation of B cells, by T cell-independent, formalin-treated staphylococci and Epstein-Barr virus, and by T cell-dependent pokeweed mitogen, also induced IL-2 receptor expression. The functional significance of this finding was investigated using recombinant IL-2 (rIL-2). While rIL-2 did not induce resting B cells to proliferate in the presence of anti-IgM, it induced activated B cells to proliferate in the absence of other factors. On the other hand, rIL-2 did not induce the differentiation of these activated B lymphocytes. These data suggest that IL-2 may play a significant role in B cell activation.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4692-4692
Author(s):  
Mauro Di Ianni ◽  
Lorenzo Moretti ◽  
Beatrice Del Papa ◽  
Maria De Ioanni ◽  
Adelmo Terenzi ◽  
...  

Abstract As Chronic Lymphocytic Leukemia (CLL) is associated with several defects in the T cell compartment, the impact of tumour burden on the autologous immune system was studied. Gene expression profiles (using Applied Biosystem Human Genome Microarray) identified 237 genes with significantly increased expression and 221 genes with significantly decreased expression (p<0.05) in CD3+ cells from CLL patients compared with healthy donors. Panther software analysis identified 34/237 upregulated genes and 26/221 downregulated genes that were involved in specific pathways, mainly cell differentiation and proliferation, survival, apoptosis, cytoskeleton formation, vesicle trafficking and T cell activation. The 26 dowregulated genes included Zap70, a member of the syk family protein tyrosine kinase, which is involved in T-cell activation. Zap-70 results were validated by mRNA quantification by RT-PCR (−1.77 fold in comparison with healthy controls) and by flow-cytometric analysis (Mean Intensity Fluorescence=33±12 vs 80±23.62 in controls, p<0.05). To test the hypothesis that activation with OKT3 /IL-2 could bypass these T cell deficiencies, activated T cells from 20 patients with CLL were tested in vitro for cytotoxicity (using the 51chromium release assay) against mutated and unmutated (according to IgVH mutational status) autologous B cells, DAUDI, K562 and P815 cell lines. After 10 days’ culture, the T cell count remained unchanged; CD8 cells expanded more than CD4; TCR spectratyping analysis indicated no differences in TCR repertoires. Activation restored the ZAP-70 mRNA (+1.67 fold). The 51chromium release cytotoxicity assay showed an index > 30% in 5/20 patients. The other 15 were partially cytotoxic against P815, K562 and Daudi. Cell line analysis in all 20 confirmed prevalently T cell-mediated cytotoxicity and poor NK/LAK activity. Cytotoxicity did not correlate with B cell mutational status. We tested the cytotoxic activity of autologous activated T cells in NOD/SCID mice co-transplanted with leukaemic B cells. Only activated T cells exerting cytotoxicity vs autologous B-cell CLL prevent CLL in human-mouse chimera, as confirmed by PCR and FACS analysis which visualised only CD3+ cells. In conclusion, in patients with CLL, activating autologous T cells with OKT3 /IL-2 bypasses, at least in part, the T cell immunological deficiencies. These in vitro and in vivo findings might serve to throw light on new mechanisms that could be exploited in immunotherapy designed to exert disease control.


2013 ◽  
Vol 289 (3) ◽  
pp. 1564-1579 ◽  
Author(s):  
Yuko Naito-Matsui ◽  
Shuhei Takada ◽  
Yoshinobu Kano ◽  
Tomonori Iyoda ◽  
Manabu Sugai ◽  
...  

Sialic acids (Sias) are often conjugated to the termini of cellular glycans and are key mediators of cellular recognition. Sias are nine-carbon acidic sugars, and, in vertebrates, the major species are N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc), differing in structure at the C5 position. Previously, we described a positive feedback loop involving regulation of Neu5Gc expression in mouse B cells. In this context, Neu5Gc negatively regulated B-cell proliferation, and Neu5Gc expression was suppressed upon activation. Similarly, resting mouse T cells expressed principally Neu5Gc, and Neu5Ac was induced upon activation. In the present work, we used various probes to examine sialoglycan expression by activated T cells in terms of the Sia species expressed and the linkages of Sias to glycans. Upon T-cell activation, sialoglycan expression shifted from Neu5Gc to Neu5Ac, and the linkage shifted from α2,6 to α2,3. These changes altered the expression levels of sialic acid-binding immunoglobulin-like lectin (siglec) ligands. Expression of sialoadhesin and Siglec-F ligands increased, and that of CD22 ligands decreased. Neu5Gc exerted a negative effect on T-cell activation, both in terms of the proliferative response and in the context of activation marker expression. Suppression of Neu5Gc expression in mouse T and B cells prevented the development of nonspecific CD22-mediated T cell-B cell interactions. Our results suggest that an activation-dependent shift from Neu5Gc to Neu5Ac and replacement of α2,6 by α2,3 linkages may regulate immune cell interactions at several levels.


1996 ◽  
Vol 183 (3) ◽  
pp. 979-989 ◽  
Author(s):  
E Stüber ◽  
W Strober

Recent in vitro studies have established that activated B cells express OX40 ligand (L), a member of the tumor necrosis factor/nerve growth factor family of cytokines, and become stimulated to proliferate and secrete immunoglobulin (Ig) after cross-linking of OX40L by its counterreceptor OX40, which is expressed on activated T cells. In the present study we investigated the in vivo role of this receptor-ligand pair for the interaction of T and B cells in the course of the T-dependent B cell response against 2,4,6 trinitro-phenyl-keyhole limpet hemocyanin. First, we showed that OX40 is maximally expressed by T cells in the periarteriolar lymphoid sheath (PALS) 3 d after primary immunization. These OX40+ cells are located in close proximity to antigen-specific, activated B cells. Second, we demonstrated that blocking of OX40-OX40L interaction with polyclonal anti-OX40 antibody or with antibodies against certain peptide sequences within its extracellular domain resulted in a profound decrease of the anti-hapten IgG response, whereas the antihapten IgM response was grossly unchanged. Third, we showed that this antibody treatment leads to an inhibition of the development of PALS-associated B cell foci, whereas the formation of germinal centers remained intact. Finally, our data suggest that, whereas B cell memory development was not impaired by anti-OX40 administration, OX40-OX40L interaction seems to be crucial in the secondary immune response. We conclude from these data that the OX40-OX40L interaction in vivo is necessary for the differentiation of activated B cells into highly Ig-producing cells, but is not involved in other pathways of antigen-driven B cell differentiation such as memory cell development in the germinal centers.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3689-3689
Author(s):  
I. Jedema ◽  
J. Olde Wolbers ◽  
E. Steeneveld ◽  
A.-M. Rasmussen ◽  
W.M. Smit ◽  
...  

Abstract Treatment of patients with relapsed or persistent acute lymphoblastic leukemia (ALL) or chronic lymphocytic leukemia (CLL) after allo-SCT with donor lymphocyte infusions (DLI) is frequently unsuccessful, probably due to the limited immunogenicity of these malignant B cells, and the lack of specificity of the T cells. In this study, we generated a broadly applicable stimulation and isolation procedure for the induction of leukemia-reactive T cells under good manufacturing practice (GMP) conditions. First, B-cell leukemias were modified into professional antigen presenting cells (APC). We previously demonstrated that CD40 crosslinking was required for the production of appropriate malignant B cell-APCs. CD40L expressing mouse fibroblasts were potent activators of CD40, but not GMP approved. CD40L trimers and CD40 antibodies crosslinked to plates or beads only minimally triggered CD40 on malignant B cells. As previously demonstrated, activated T cells briefly express CD40L. We first determined the dynamics and kinetics of CD40L expression on peripheral blood (PB) donor T cells after stimulation with CD3/28 Dynal T cell expansion-beads added in a ratio of 1 bead/10 PBMC. The kinetics were highly variable, with the optimal surface expression of CD40L on a median of 20% of the T cells (range 10–35%, n=6) being detectable between day 1 and 5. We next investigated the capacity of these activated T cells to stimulate malignant B cells in PB from patients with ALL or CLL containing 60–95% leukemic cells. We developed a two-step strategy using special CD3/28 Dynal isolation beads applicable not only for T cell activation, but also for T cell isolation. Using these beads, the T cells were depleted from the PB of the patient, directly irradiated and added back to the B cell cultures. After 3–7 days all B cells displayed a good APC phenotype with expression of CD80, CD86, and CD83 in the patient samples containing >5% T cells. If insufficient T cell numbers were present, donor T cells could be used as source of CD40L. Leukemia-reactive T cells could be reproducibly generated after two stimulations of fully HLA matched donor T cells with the leukemic APC under mild stimulatory conditions, followed by isolation of the responding T cells based on their production of interferon gamma (IFNg). Next, we investigated whether the leukemia-reactive T cells were the result of the successful induction of a primary immune response or that recognition of mimicry epitopes by previously activated T cells was underlying the activity. We separated unmodified donor T cells into CD45 RO+ memory cells, CD45RA+/CD27+ naive cells, and CD45RA+/CD27− effector cells by MACS CD45RO depletion, followed by FACS sorting on CD27, and stimulated these fractions with malignant APCs. Whereas high frequencies of IFNg producing T cells (5–15%) with cytotoxic activity against the primary leukemia (20–50% lysis) were induced from the naive T cell population, no leukemia-reactive T cells could be isolated from the memory or effector T cell populations (n=3). In conclusion, T cells stimulated with CD3/28 Dynal beads have a transient expression of CD40L and can be used as an alternative source of CD40L to generate good APC of malignant B cells under GMP conditions. These malignant B cell APCs were capable of inducing efficient priming of primary anti-leukemic immune responses by activating naive donor T cells.


Blood ◽  
2008 ◽  
Vol 112 (12) ◽  
pp. 4555-4564 ◽  
Author(s):  
Theresa Tretter ◽  
Ram K. C. Venigalla ◽  
Volker Eckstein ◽  
Rainer Saffrich ◽  
Serkan Sertel ◽  
...  

Abstract B cells are well-known mediators of humoral immunity and serve as costimulators in the generation of T cell–mediated responses. In several mouse models, however, it was observed that B cells can also down-regulate immune reactions, suggesting a dual role for B cells. Due to this discrepancy and so far limited data, we directly tested the effects of primary human B cells on activated CD4+ T helper cells in vitro. We found that under optimal costimulation large, activated CD25+ B cells but not small CD25− B cells induced temporary T-cell anergy, determined by cell division arrest and down-regulation of cytokine production. In addition, large CD25+ B cells directly induced CD95-independent apoptosis in a subpopulation of activated T cells. Suppression required direct B-T-cell contact and was not transferable from T to T cell, excluding potential involvement of regulatory T cells. Moreover, inhibitory effects involved an IL-2–dependent mechanism, since decreasing concentrations of IL-2 led to a shift from inhibitory toward costimulatory effects triggered by B cells. We conclude that activated CD25+ B cells are able to costimulate or down-regulate T-cell responses, depending on activation status and environmental conditions that might also influence their pathophysiological impact.


Sign in / Sign up

Export Citation Format

Share Document