The effect of desmopressin on platelet function: a selective enhancement of procoagulant COAT platelets in patients with primary platelet function defects

Blood ◽  
2014 ◽  
Vol 123 (12) ◽  
pp. 1905-1916 ◽  
Author(s):  
Giuseppe Colucci ◽  
Monika Stutz ◽  
Sophie Rochat ◽  
Tiziana Conte ◽  
Marko Pavicic ◽  
...  

Key PointsDDAVP is the drug of choice for mild hemophilia A and von Willebrand disease and (by unclear mechanisms) for platelet function disorders. In vivo DDAVP selectively and markedly enhances the ability to form procoagulant platelets by enhancing intracellular Na+ and Ca2+ fluxes.

Author(s):  
Akbar Dorgalaleh ◽  
Yadolah Farshi ◽  
Kamand Haeri ◽  
Omid Baradarian Ghanbari ◽  
Abbas Ahmadi

AbstractIntracerebral hemorrhage (ICH) is the most dreaded complication, and the main cause of death, in patients with congenital bleeding disorders. ICH can occur in all congenital bleeding disorders, ranging from mild, like some platelet function disorders, to severe disorders such as hemophilia A, which can cause catastrophic hemorrhage. While extremely rare in mild bleeding disorders, ICH is common in severe coagulation factor (F) XIII deficiency. ICH can be spontaneous or trauma-related. Spontaneous ICH occurs more often in adults, while trauma-related ICH is more prevalent in children. Risk factors that can affect the occurrence of ICH include the type of bleeding disorder and its severity, genotype and genetic polymorphisms, type of delivery, and sports and other activities. Patients with hemophilia A; afibrinogenemia; FXIII, FX, and FVII deficiencies; and type 3 von Willebrand disease are more susceptible than those with mild platelet function disorders, FV, FXI, combined FV–FVIII deficiencies, and type 1 von Willebrand disease. Generally, the more severe the disorder, the more likely the occurrence of ICH. Contact sports and activities can provoke ICH, while safe and noncontact sports present more benefit than danger. An important risk factor is stressful delivery, whether it is prolonged or by vacuum extraction. These should be avoided in patients with congenital bleeding disorders. Familiarity with all risk factors of ICH can help prevent occurrence of this diathesis and reduce related morbidity and mortality.


2015 ◽  
Author(s):  
Lawrence L K Leung ◽  
James L. Zehnder

A bleeding disorder may be suspected when a patient reports spontaneous or excessive bleeding or bruising, often secondary to trauma. Possible causes can vary between abnormal platelet number or function, abnormal vascular integrity, coagulation defects, fibrinolysis, or a combination thereof. This review addresses hemorrhagic disorders associated with quantitative or qualitative platelet abnormalities, such as thrombocytopenia, platelet function disorders, thrombocytosis and thrombocythemia, and vascular purpuras. Hemorrhagic dis­orders associated with abnormalities in coagulation (e.g., von Willebrand disease and hemophilia) are not covered. An algorithm shows evidence-based practice guidelines for the management of immune thrombocytopenic purpura. Tables list questions regarding bleeding and bruising to ask patients, clinical manifestations of hemorrhagic disorders, typical results of tests for hemostatic function in bleeding disorders, causes of thrombocytopenia, other forms of drug-induced thrombocytopenia, classification of platelet function disorders, and selected platelet-modifying agents. This review contains ­1 highly rendered figure, 7 tables, and 82 references. 


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 5266-5266 ◽  
Author(s):  
Celine Desconclois ◽  
Vincent Valarche ◽  
Tewfik Boutekedjiret ◽  
Martine Raphael ◽  
Marie Dreyfus ◽  
...  

Abstract Abstract 5266 Diagnosis and characterization of platelet function disorders may be challenging. It requires multiple laboratory data including the assessment of platelet functions. Platelet function analysis is most commonly performed using light transmission aggregometry (LTA). LTA is a time-consuming method requiring centrifugation steps and large blood volumes. It is difficult to perform in children and in cases of thrombocytopenia. In contrast, platelet aggregation in whole blood using impedancemetry (WBI) is a fast method, allows omission of centrifugation steps and performance of platelet function studies under more physiological conditions with small samples size. It is based on the change of resistance proportional to the amount of platelets sticking to two electrodes where an alternating current is applied. Multiplate® (for “multiple electrode aggregometry”, Dynabite Medical) is a new generation of WBI aggregometer using diluted blood and single-use test cells containing twin electrodes that reduce the variation of results. We have already showed the good Multiplate® performance concerning ristocetin-induced platelet aggregation in a population of 30 patients with characterized von Willebrand disease (Valarche et al, 2011). Our aim in this ongoing study was to assess the performance of WBI in patients with inherited platelet function disorders. We tested 8 patients including 2 unrelated patients with Glanzmann Thrombasthenia (GT), 2 unrelated patients with Bernard-Soulier Syndrome (BSS), 1 patient with Gray Platelet Syndrome (GPS) and 3 patients from the same family with a platelet type von Willebrand disease (PTVWD). GT, BSS, and PTVWD diagnosis were confirmed using genotyping. BSS and GPS patients had chronic thrombocytopenia. GT, BSS, GPS and 1/3 PTVWD had platelet function tests with LTA in parallel. WBI was performed on heparinized whole blood diluted at ½ in NaCl at 37°C and triggered using high (0.77 mg/mL, WBI RH) and low (0.5 mg/mL, WBI RL) final ristocetin concentrations, ADP (6.5 Âμ Mol, WBI ADP) and collagen (3.2 Âμg/mL, WBI Coll). Results were expressed in arbitrary unit (AU) corresponding to the area under the aggregation curve observed during 6 min. Normal ranges indicated in brackets were based on the mean +/− 2 SD of 30 healthy volunteers' results. Results highlighted in grey are those out of the normal ranges (Table 1).Table 1:Results of the 8 patients with inherited platelet disorders.PatientsPlatelet count (109/L)WBI RH (AU) [>500]WBI RL (AU) [<150]WBI ADP (AU) [>550]WBI Coll (AU) [>500]GT 116923441443GT 224955417ND7BSS 134371119129BSS 230254733582GPS7916217ND42PTVWD22099493ND338PTVWD231116560ND1092PTVWD2341174168ND852 All patients except those with PTVWD had decreased results with WBI. However, as expected, patients with GT had flat traces using WBI ADP and WBI Coll but normal or only decreased curves (234 – 554 AU) using WBI RH. On the opposite, BSS patients had flat traces using WBI RH but detectable curves using WBI ADP (191 – 335 AU) despite decreased platelet count. The thrombocytopenic GPS patient has a flat trace using WBI Coll and decreased WBI RH (162 AU). Members of the PTVWD family had normal results except a slightly increased result with WBI RH in 1/3 patients. Finally, LTA results performed in 6/8 patients were all in accordance with those of the WBI. In conclusion, in 8 patients with well characterized inherited platelet disorders, WBI was able to detect all abnormalities except PTVWD. In such cases, different ristocetin concentrations use might be critical to increase sensitivity. In our hands, WBI was able to discriminate disorders involving platelet glycoprotein (GP) IIb-IIIa from GP Ib-IX-V: GT patients exhibited flat traces using WBI ADP and WBI Coll, whereas patients with BSS exhibited flat traces with ristocetin. These preliminary results need to be confirmed on a larger population of patients with various characterized platelet function disorders. They suggest that WBI using the Multiplate® analyzer, which is a fast, easy and blood-preserving test, could be a valuable extra step before or in addition to the classic LTA for the diagnosis of severe inherited platelet disorders. Disclosures: No relevant conflicts of interest to declare.


2005 ◽  
Vol 11 (3) ◽  
pp. 325-330 ◽  
Author(s):  
Meenal Gupta ◽  
Maitreyee Bhattacharyya ◽  
V. P. Choudhry ◽  
Renu Saxena

The incidence of hereditary hemorrhagic disorders may vary according to the country and ethnic origin. Von Willebrand disease has emerged as the most common hereditary hemorrhagic disease in the industrialized world. In this series of 966 patients diagnosed to have inherited bleeding disorders, hemophilia A was the most common and was seen in 410 (42.4%) of the patients followed by platelet function defects seen in 380 (39.4%) of the patients. It is thus concluded that, similar to the white population, hemophilia A remains the most common bleeding disorder in the Indian population, although this is closely followed by platelet function defects in India, which are quite rare in whites. Von Willebrand disease is relatively rare in the Indian population.


2014 ◽  
Vol 21 (6) ◽  
pp. 565-569 ◽  
Author(s):  
Burcu Belen ◽  
Ulker Kocak ◽  
Melek Isik ◽  
Ebru Yilmaz Keskin ◽  
Nergiz Oner ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 41-41 ◽  
Author(s):  
Patricia A. Lamont ◽  
Margaret V. Ragni

Abstract Although the extracellular association of Factor VIII (FVIII) and Von Willebrand Factor (VWF) is well established, the intracellular interaction of FVIII and VWF is not well understood. Recently, the importance of intracellular co-localization of FVIII and VWF for in vitro FVIII secretion was demonstrated in endothelial cell lines. Whether intracellular co-localization of FVIII and VWF is required for in vivo FVIII secretion, however, is not known. We previously showed that liver transplantation leads to phenotypic cure of hemophilia A, by virtue of FVIII production in the allograft liver. Because FVIII is synthesized only in the allograft liver but not in endothelial cells of transplant recipients, and VWF is synthesized in extrahepatic tissue, this is an ideal model to study whether co-localization of FVIII and VWF is required for in vivo FVIII secretion. We, therefore, studied FVIII and VWF response after desmopression (DDAVP) infusion, administered at 0.3 mcg/kg by intravenous infusion over 30 minutes, in each of two men with severe hemophilia A (FVIII:C <0.01 U/ml) who had undergone orthotopic liver transplantation for endstage liver disease six months earlier. Both men had HIV and hepatitis C co-infection and were clinically well, with mildly elevated liver function tests, and FVIII:C levels >30% following transplantation. Coagulation studies, drawn before and after DDAVP, revealed that VWF:RCoF and VWF:Ag, but not FVIII:C, increased after DDAVP administration (see Table). The prolonged aPTT and correction in a 1:1 aPTT mix confirmed the absence of an inhibitor in these subjects. The lack of FVIII response to DDAVP supports previous in vitro work, and demonstrates for the first time that intracellular co-localization of FVIII and VWF is essential for in vivo FVIII secretion. These data also suggest that extrahepatic FVIII synthesis is necessary for in vivo response of the DDAVP releasable pool of FVIII. By contrast, co-localization does not appear to be necessary for VWF secretion. Although it is not possible to exclude that a chronic, exhaustive post-transplant increase in VWF may have limited VWF response to DDAVP, it is clear that FVIII did not increase following DDAVP. These findings have important implications for the design of gene therapies for hemophilia A and Von Willebrand Disease. Subject Demographic Sample aPTT aPTT mix FVIII:C VWF:RCoF VWF:Ag 01-BW 32yoM Hem A Pre-DDAVP 44.4 sec 37.7 sec 0.50 U/ml 2.17 U/ml 2.42 U/ml HIV+/HCV+ Post-DDAVP 44.8 sec 37.4 sec 0.48 U/ml 2.91 U/ml 2.91 U/ml 02-PB 36yoM Hem A Pre-DDAVP 49.5 sec 38.0 sec 0.32 U/ml 1.61 U/ml 2.16 U/ml HIV+/HCV+ Post-DDAVP 50.8 sec 38.5 sec 0.30 U/ml 2.20 U/ml 2.50 U/ml


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 692-692 ◽  
Author(s):  
Lingfei Xu ◽  
Timothy C. Nichols ◽  
Stephanie McCorquodale ◽  
Aaron Dillow ◽  
Elizabeth Merricks ◽  
...  

Abstract Desmopressin (1-deamino-8-D-arginine vasopressin, DDAVP) is commonly used as a nonreplacement therapy for mild von Willebrand disease (VWD) and hemophilia A. In humans, IV injection of 0.3 μg/kg of DDAVP induces a rapid 2 to 5-fold increase in plasma levels of both von Willebrand factor (VWF) and Factor VIII (FVIII) within 30–60 minutes, which is due to release from Wiebel-Palade bodies (WPBs) in endothelial cells. The stored FVIII may be synthesized by endothelial cells, which express FVIII in vitro. However, hepatoma cells can also express FVIII in vitro, and liver transplantation can correct hemophilia A. Thus, the liver may be the major site of production of FVIII in vivo, thus, an alternative explanation is that endothelial cells take up FVIII from blood and store it in WPBs with VWF, which can be released after DDAVP. DDAVP is effective in humans and dogs, but not in mice. In this study, we tested the effect of DDAVP on hemophilia A dogs after neonatal hepatic gene therapy with a retroviral vector (RV) expressing canine FVIII (cFVIII). With this gene therapy approach, canine hepatocytes express high levels of a reporter gene from an RV, but no expression is observed in endothelial cells. Thus, the major site of FVIII synthesis is the hepatocyte in this model. Our hypothesis is that if DDAVP increases FVIII levels in this dog model, it would indicate that the FVIII increase is due to uptake from blood by endothelial cells. Alternatively, if no increase in FVIII occurs after DDAVP stimulation, it would suggest that the increase in normal dogs is due to synthesis of FVIII by endothelial cells. An RV that contains the liver-specific human α1-antitrypsin promoter and the canine B-domain deleted FVIII cDNA was generated. RV was given IV to two hemophilia A dogs at 8x109 transducing units (TU)/kg at 3 days after birth. The whole blood clotting time (WBCT) and APTT time in both dogs have been normalized, and the plasma cFVIII COATEST activity has been maintained at 100–200% of normal for 11 months to date. DDAVP was injected IV at 0.5 μg/kg into RV-treated hemophilia A dogs at 7 months of age. Two separate doses of DDAVP were given with an interval of one week. The same dose of DDAVP was given to normal dogs as controls (N=4). In normal dogs, both VWF and FVIII levels increased 40% and 50% between 15 to 60 minutes after DDAVP, respectively. However, FVIII levels were not changed in RV-treated dogs, although VWF levels increased 150% or 60%. Thus, our data suggest that the normal FVIII increase after DDAVP administration is due to release of FVIII that is synthesized by endothelial cells. These data also demonstrate that DDAVP will not be effective at increasing FVIII activity in patients that receive liver-directed gene therapy and only achieve partial correction. Such patients would need to be treated with factor replacement if bleeding episodes occur.


2002 ◽  
Vol 13 (4) ◽  
pp. 349-353 ◽  
Author(s):  
Y. Buyukasik ◽  
S. Karakus ◽  
H. Goker ◽  
I. C. Haznedaroglu ◽  
D. Ozatli ◽  
...  

2011 ◽  
Vol 31 (S 01) ◽  
pp. S64-S68
Author(s):  
M. Stein ◽  
K. Scholz ◽  
B. Llugaliu ◽  
G. Asmelash ◽  
W. Miesbach ◽  
...  

SummaryIn patients with isolated prolonged in vitro bleeding time there is no standardised treatment concept. With this study we characterized the extent of bleeding symptoms. Patients, methods All diagnoses known to cause prolonged in vitro bleeding time (PFA-100) (epinephrine-cartridge >160 s, ADP-cartridge > 120 s) have been excluded, such as platelet function disorders, effects of medications, nutrition or von Willebrand disease. 75 patients (77%, n = 58 women; 23%, n = 17 men, median age 46 (16–81) years were included. All bleeding symptoms have been stored in a databank with help of a comprehensive questionnaire. Results 78% (n = 54) of all patients reported of having had an operation, 69.8% (n = 37) of them described postoperative bleedings (p = 0.0373). 13.5% (n = 5) of the 54 could remember having been randomly treated by the administration of a transfusion and only 2.7% (n = 1) were treated by substitution of von Willebrand factor. 71% (n = 51) patients indicated haematoma (p = 0.8116). About 33.8% (n = 24) patients had gum bleeding and 40.8% (n = 29, p = 0.7808) patients reported bleeding after the dentist. 41.4% (n = 29) patients suffered under frequent epistaxis (p = 0.0212). There was no correlation between prolonged epinephrine bleeding time to VWF : Ag (rho = 0.16) nor to VWF : RCo (rho = 0.12) nor between prolonged epinephrine and ADP bleeding time (rho = 0.01) nor to ROTEM® analysis. Conclusion Patients with isolated prolonged PFA are mainly women and can be affected by all kinds of bleedings while haematoma is the main symptom. VWD might not be causal


Sign in / Sign up

Export Citation Format

Share Document