Spectrum of Von Willebrand disease and inherited platelet function disorders amongst Indian bleeders

2007 ◽  
Vol 86 (6) ◽  
pp. 403-407 ◽  
Author(s):  
P. K. Gupta ◽  
V. D. Charan ◽  
R. Saxena
2015 ◽  
Author(s):  
Lawrence L K Leung ◽  
James L. Zehnder

A bleeding disorder may be suspected when a patient reports spontaneous or excessive bleeding or bruising, often secondary to trauma. Possible causes can vary between abnormal platelet number or function, abnormal vascular integrity, coagulation defects, fibrinolysis, or a combination thereof. This review addresses hemorrhagic disorders associated with quantitative or qualitative platelet abnormalities, such as thrombocytopenia, platelet function disorders, thrombocytosis and thrombocythemia, and vascular purpuras. Hemorrhagic dis­orders associated with abnormalities in coagulation (e.g., von Willebrand disease and hemophilia) are not covered. An algorithm shows evidence-based practice guidelines for the management of immune thrombocytopenic purpura. Tables list questions regarding bleeding and bruising to ask patients, clinical manifestations of hemorrhagic disorders, typical results of tests for hemostatic function in bleeding disorders, causes of thrombocytopenia, other forms of drug-induced thrombocytopenia, classification of platelet function disorders, and selected platelet-modifying agents. This review contains ­1 highly rendered figure, 7 tables, and 82 references. 


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 5266-5266 ◽  
Author(s):  
Celine Desconclois ◽  
Vincent Valarche ◽  
Tewfik Boutekedjiret ◽  
Martine Raphael ◽  
Marie Dreyfus ◽  
...  

Abstract Abstract 5266 Diagnosis and characterization of platelet function disorders may be challenging. It requires multiple laboratory data including the assessment of platelet functions. Platelet function analysis is most commonly performed using light transmission aggregometry (LTA). LTA is a time-consuming method requiring centrifugation steps and large blood volumes. It is difficult to perform in children and in cases of thrombocytopenia. In contrast, platelet aggregation in whole blood using impedancemetry (WBI) is a fast method, allows omission of centrifugation steps and performance of platelet function studies under more physiological conditions with small samples size. It is based on the change of resistance proportional to the amount of platelets sticking to two electrodes where an alternating current is applied. Multiplate® (for “multiple electrode aggregometry”, Dynabite Medical) is a new generation of WBI aggregometer using diluted blood and single-use test cells containing twin electrodes that reduce the variation of results. We have already showed the good Multiplate® performance concerning ristocetin-induced platelet aggregation in a population of 30 patients with characterized von Willebrand disease (Valarche et al, 2011). Our aim in this ongoing study was to assess the performance of WBI in patients with inherited platelet function disorders. We tested 8 patients including 2 unrelated patients with Glanzmann Thrombasthenia (GT), 2 unrelated patients with Bernard-Soulier Syndrome (BSS), 1 patient with Gray Platelet Syndrome (GPS) and 3 patients from the same family with a platelet type von Willebrand disease (PTVWD). GT, BSS, and PTVWD diagnosis were confirmed using genotyping. BSS and GPS patients had chronic thrombocytopenia. GT, BSS, GPS and 1/3 PTVWD had platelet function tests with LTA in parallel. WBI was performed on heparinized whole blood diluted at ½ in NaCl at 37°C and triggered using high (0.77 mg/mL, WBI RH) and low (0.5 mg/mL, WBI RL) final ristocetin concentrations, ADP (6.5 Âμ Mol, WBI ADP) and collagen (3.2 Âμg/mL, WBI Coll). Results were expressed in arbitrary unit (AU) corresponding to the area under the aggregation curve observed during 6 min. Normal ranges indicated in brackets were based on the mean +/− 2 SD of 30 healthy volunteers' results. Results highlighted in grey are those out of the normal ranges (Table 1).Table 1:Results of the 8 patients with inherited platelet disorders.PatientsPlatelet count (109/L)WBI RH (AU) [>500]WBI RL (AU) [<150]WBI ADP (AU) [>550]WBI Coll (AU) [>500]GT 116923441443GT 224955417ND7BSS 134371119129BSS 230254733582GPS7916217ND42PTVWD22099493ND338PTVWD231116560ND1092PTVWD2341174168ND852 All patients except those with PTVWD had decreased results with WBI. However, as expected, patients with GT had flat traces using WBI ADP and WBI Coll but normal or only decreased curves (234 – 554 AU) using WBI RH. On the opposite, BSS patients had flat traces using WBI RH but detectable curves using WBI ADP (191 – 335 AU) despite decreased platelet count. The thrombocytopenic GPS patient has a flat trace using WBI Coll and decreased WBI RH (162 AU). Members of the PTVWD family had normal results except a slightly increased result with WBI RH in 1/3 patients. Finally, LTA results performed in 6/8 patients were all in accordance with those of the WBI. In conclusion, in 8 patients with well characterized inherited platelet disorders, WBI was able to detect all abnormalities except PTVWD. In such cases, different ristocetin concentrations use might be critical to increase sensitivity. In our hands, WBI was able to discriminate disorders involving platelet glycoprotein (GP) IIb-IIIa from GP Ib-IX-V: GT patients exhibited flat traces using WBI ADP and WBI Coll, whereas patients with BSS exhibited flat traces with ristocetin. These preliminary results need to be confirmed on a larger population of patients with various characterized platelet function disorders. They suggest that WBI using the Multiplate® analyzer, which is a fast, easy and blood-preserving test, could be a valuable extra step before or in addition to the classic LTA for the diagnosis of severe inherited platelet disorders. Disclosures: No relevant conflicts of interest to declare.


Author(s):  
Akbar Dorgalaleh ◽  
Yadolah Farshi ◽  
Kamand Haeri ◽  
Omid Baradarian Ghanbari ◽  
Abbas Ahmadi

AbstractIntracerebral hemorrhage (ICH) is the most dreaded complication, and the main cause of death, in patients with congenital bleeding disorders. ICH can occur in all congenital bleeding disorders, ranging from mild, like some platelet function disorders, to severe disorders such as hemophilia A, which can cause catastrophic hemorrhage. While extremely rare in mild bleeding disorders, ICH is common in severe coagulation factor (F) XIII deficiency. ICH can be spontaneous or trauma-related. Spontaneous ICH occurs more often in adults, while trauma-related ICH is more prevalent in children. Risk factors that can affect the occurrence of ICH include the type of bleeding disorder and its severity, genotype and genetic polymorphisms, type of delivery, and sports and other activities. Patients with hemophilia A; afibrinogenemia; FXIII, FX, and FVII deficiencies; and type 3 von Willebrand disease are more susceptible than those with mild platelet function disorders, FV, FXI, combined FV–FVIII deficiencies, and type 1 von Willebrand disease. Generally, the more severe the disorder, the more likely the occurrence of ICH. Contact sports and activities can provoke ICH, while safe and noncontact sports present more benefit than danger. An important risk factor is stressful delivery, whether it is prolonged or by vacuum extraction. These should be avoided in patients with congenital bleeding disorders. Familiarity with all risk factors of ICH can help prevent occurrence of this diathesis and reduce related morbidity and mortality.


2014 ◽  
Vol 21 (6) ◽  
pp. 565-569 ◽  
Author(s):  
Burcu Belen ◽  
Ulker Kocak ◽  
Melek Isik ◽  
Ebru Yilmaz Keskin ◽  
Nergiz Oner ◽  
...  

2002 ◽  
Vol 13 (4) ◽  
pp. 349-353 ◽  
Author(s):  
Y. Buyukasik ◽  
S. Karakus ◽  
H. Goker ◽  
I. C. Haznedaroglu ◽  
D. Ozatli ◽  
...  

2011 ◽  
Vol 31 (S 01) ◽  
pp. S64-S68
Author(s):  
M. Stein ◽  
K. Scholz ◽  
B. Llugaliu ◽  
G. Asmelash ◽  
W. Miesbach ◽  
...  

SummaryIn patients with isolated prolonged in vitro bleeding time there is no standardised treatment concept. With this study we characterized the extent of bleeding symptoms. Patients, methods All diagnoses known to cause prolonged in vitro bleeding time (PFA-100) (epinephrine-cartridge >160 s, ADP-cartridge > 120 s) have been excluded, such as platelet function disorders, effects of medications, nutrition or von Willebrand disease. 75 patients (77%, n = 58 women; 23%, n = 17 men, median age 46 (16–81) years were included. All bleeding symptoms have been stored in a databank with help of a comprehensive questionnaire. Results 78% (n = 54) of all patients reported of having had an operation, 69.8% (n = 37) of them described postoperative bleedings (p = 0.0373). 13.5% (n = 5) of the 54 could remember having been randomly treated by the administration of a transfusion and only 2.7% (n = 1) were treated by substitution of von Willebrand factor. 71% (n = 51) patients indicated haematoma (p = 0.8116). About 33.8% (n = 24) patients had gum bleeding and 40.8% (n = 29, p = 0.7808) patients reported bleeding after the dentist. 41.4% (n = 29) patients suffered under frequent epistaxis (p = 0.0212). There was no correlation between prolonged epinephrine bleeding time to VWF : Ag (rho = 0.16) nor to VWF : RCo (rho = 0.12) nor between prolonged epinephrine and ADP bleeding time (rho = 0.01) nor to ROTEM® analysis. Conclusion Patients with isolated prolonged PFA are mainly women and can be affected by all kinds of bleedings while haematoma is the main symptom. VWD might not be causal


Blood ◽  
2014 ◽  
Vol 123 (12) ◽  
pp. 1905-1916 ◽  
Author(s):  
Giuseppe Colucci ◽  
Monika Stutz ◽  
Sophie Rochat ◽  
Tiziana Conte ◽  
Marko Pavicic ◽  
...  

Key PointsDDAVP is the drug of choice for mild hemophilia A and von Willebrand disease and (by unclear mechanisms) for platelet function disorders. In vivo DDAVP selectively and markedly enhances the ability to form procoagulant platelets by enhancing intracellular Na+ and Ca2+ fluxes.


Hematology ◽  
2021 ◽  
Vol 2021 (1) ◽  
pp. 85-91
Author(s):  
Kristi J. Smock ◽  
Karen A. Moser

Abstract Bleeding disorders with normal, borderline, or nondiagnostic coagulation tests represent a diagnostic challenge. Disorders of primary hemostasis can be further evaluated by additional platelet function testing modalities, platelet electron microscopy, repeat von Willebrand disease testing, and specialized von Willebrand factor testing beyond the usual initial panel. Secondary hemostasis is further evaluated by coagulation factor assays, and factor XIII assays are used to diagnose disorders of fibrin clot stabilization. Fibrinolytic disorders are particularly difficult to diagnose with current testing options. A significant number of patients remain unclassified after thorough testing; most unclassified patients have a clinically mild bleeding phenotype, and many may have undiagnosed platelet function disorders. High-throughput genetic testing using large gene panels for bleeding disorders may allow diagnosis of a larger number of these patients in the future, but more study is needed. A logical laboratory workup in the context of the clinical setting and with a high level of expertise regarding test interpretation and limitations facilitates a diagnosis for as many patients as possible.


1996 ◽  
Vol 76 (03) ◽  
pp. 460-468 ◽  
Author(s):  
Francesco I Pareti ◽  
Marco Cattaneo ◽  
Luca Carpinelli ◽  
Maddalena L Zighetti ◽  
Caterina Bressi ◽  
...  

SummaryWe have evaluated platelet function in different subtypes of von Willebrand disease (vWD) by pushing blood through the capillarysized channels of a glass filter. Patients, including those with type IIB vWD, showed lower than normal platelet retention and increased cumulative number of blood drops passing through the filter as a function of time. In contrast, shear-induced platelet aggregation, measured in the cone-and-plate viscometer, was paradoxically increased in type IIB patients. Treatment with l-desamino-8-D-arginine vasopressin (DDAVP) tended to normalize the filter test in patients with type I-platelet normal and type I-platelet low vWD, but infusion of a factor VUI/von Willebrand factor (vWF) concentrate lacking the largest vWF multimers was without effect in type 3 patients. Experiments with specific monoclonal antibodies demonstrated that the A1 and A3 domains of vWF, as well as the glycoproteins Ibα and Ilb-IIIa on platelets, are required for platelet retention in the filter. Thus, the test may reflect vWF function with regard to both platelet adhesion and aggregation under high shear stress, and provide relevant information on mechanisms involved in primary hemostasis.


Sign in / Sign up

Export Citation Format

Share Document