scholarly journals Current concepts in the diagnosis and management of cytokine release syndrome

Blood ◽  
2014 ◽  
Vol 124 (2) ◽  
pp. 188-195 ◽  
Author(s):  
Daniel W. Lee ◽  
Rebecca Gardner ◽  
David L. Porter ◽  
Chrystal U. Louis ◽  
Nabil Ahmed ◽  
...  

Abstract As immune-based therapies for cancer become potent, more effective, and more widely available, optimal management of their unique toxicities becomes increasingly important. Cytokine release syndrome (CRS) is a potentially life-threatening toxicity that has been observed following administration of natural and bispecific antibodies and, more recently, following adoptive T-cell therapies for cancer. CRS is associated with elevated circulating levels of several cytokines including interleukin (IL)-6 and interferon γ, and uncontrolled studies demonstrate that immunosuppression using tocilizumab, an anti-IL-6 receptor antibody, with or without corticosteroids, can reverse the syndrome. However, because early and aggressive immunosuppression could limit the efficacy of the immunotherapy, current approaches seek to limit administration of immunosuppressive therapy to patients at risk for life-threatening consequences of the syndrome. This report presents a novel system to grade the severity of CRS in individual patients and a treatment algorithm for management of CRS based on severity. The goal of our approach is to maximize the chance for therapeutic benefit from the immunotherapy while minimizing the risk for life threatening complications of CRS.

2021 ◽  
Vol 5 (6) ◽  
pp. 1695-1705
Author(s):  
Jeremy S. Abramson ◽  
Tanya Siddiqi ◽  
Jacob Garcia ◽  
Christine Dehner ◽  
Yeonhee Kim ◽  
...  

Abstract Chimeric antigen receptor (CAR) T-cell therapies have demonstrated high response rates in patients with relapsed/refractory large B-cell lymphoma (LBCL); however, these therapies are associated with 2 CAR T cell–specific potentially severe adverse events (AEs): cytokine release syndrome (CRS) and neurological events (NEs). This study estimated the management costs associated with CRS/NEs among patients with relapsed/refractory LBCL using data from the pivotal TRANSCEND NHL 001 trial of lisocabtagene maraleucel, an investigational CD19-directed defined composition CAR T-cell product with a 4-1BB costimulation domain administered at equal target doses of CD8+ and CD4+ CAR+ T cells. This retrospective analysis of patients from TRANSCEND with prospectively identified CRS and/or NE episodes examined relevant trial-observed health care resource utilization (HCRU) associated with toxicity management based on the severity of the event from the health care system perspective. Cost estimates for this analysis were taken from publicly available databases and published literature. Of 268 treated patients as of April 2019, 127 (47.4%) experienced all-grade CRS and/or NEs, which were predominantly grade ≤2 (77.2%). Median total AE management costs ranged from $1930 (grade 1 NE) to $177 343 (concurrent grade ≥3 CRS and NE). Key drivers of cost were facility expenses, including intensive care unit and other inpatient hospitalization lengths of stay. HCRU and costs were significantly greater among patients with grade ≥3 AEs (22.8%). Therefore, CAR T-cell therapies with a low incidence of severe CRS/NEs will likely reduce HCRU and costs associated with managing patients receiving CAR T-cell therapy. This clinical trial was registered at www.clinicaltrials.gov as #NCT02631044.


Blood ◽  
2019 ◽  
Vol 134 (24) ◽  
pp. 2149-2158 ◽  
Author(s):  
Rebecca A. Gardner ◽  
Francesco Ceppi ◽  
Julie Rivers ◽  
Colleen Annesley ◽  
Corinne Summers ◽  
...  

Gardner et al report that early intervention with tocilizumab and steroids at the first signs of mild cytokine release syndrome (CRS) following CD19 chimeric antigen receptor (CAR) T-cell infusion for B-cell acute lymphocytic leukemia reduces the development of life-threatening severe CRS without having a negative impact on antileukemic effect.


Author(s):  
Chiara Musiu ◽  
Simone Caligola ◽  
Alessandra Fiore ◽  
Alessia Lamolinara ◽  
Cristina Frusteri ◽  
...  

AbstractInflammatory responses rapidly detect pathogen invasion and mount a regulated reaction. However, dysregulated anti-pathogen immune responses can provoke life-threatening inflammatory pathologies collectively known as cytokine release syndrome (CRS), exemplified by key clinical phenotypes unearthed during the SARS-CoV-2 pandemic. The underlying pathophysiology of CRS remains elusive. We found that FLIP, a protein that controls caspase-8 death pathways, was highly expressed in myeloid cells of COVID-19 lungs. FLIP controlled CRS by fueling a STAT3-dependent inflammatory program. Indeed, constitutive expression of a viral FLIP homolog in myeloid cells triggered a STAT3-linked, progressive, and fatal inflammatory syndrome in mice, characterized by elevated cytokine output, lymphopenia, lung injury, and multiple organ dysfunctions that mimicked human CRS. As STAT3-targeting approaches relieved inflammation, immune disorders, and organ failures in these mice, targeted intervention towards this pathway could suppress the lethal CRS inflammatory state.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1983-1983 ◽  
Author(s):  
David L. Porter ◽  
Simon F. Lacey ◽  
Wei-Ting Hwang ◽  
Pamela Shaw ◽  
Noelle V. Frey ◽  
...  

Abstract CTL019 are autologous T cells genetically modified to express a chimeric antigen receptor (CAR) consisting of an external anti-CD19 domain with the CD3z and 4-1BB signaling domains, and mediate potent anti-tumor effects in patients (pts) with advanced, R/R CLL, ALL and NHL. CRS is the most serious toxicity of CTL019 therapy; symptoms can include fevers, nausea, myalgias, capillary leak, hypoxia, and hypotension. Standard CRS grading criteria are not applicable to CAR T cell therapies. To better capture clinical manifestations of CRS and guide intervention after CTL019, we devised a novel CRS grading scale. that was applied to 40 pts treated with CTL019 for R/R CLL; 14 pts on an initial pilot and 26 pts on an ongoing dose-optimization trial (reported separately). Our new CRS grading system is shown below. Pts were 80% male, a median age of 65 (range 51-78) and received a median of 4 prior therapies (range 1-10). 41% had known mutation at p53. 83% of 24 pts tested had unmutated IgVH. Response rate to CTL019 (CR+PR) was 42%. CRS was the major toxicity and occurred in 57% (23/40) of pts. CRS was gr 1 in 10%, gr 2 in 17%, gr 3 in 15% and gr 4 in 15%. Development of CRS correlated with response; 13/23 (57%) pts with CRS responded versus 4/17 (24%) pts without CRS responded (p=0.05). CRS was associated with elevations in IL-6, IFN-g, and other cytokines; details for 33 pts will be presented. Peak fold-increase over baseline for IL-6 was a median of 10.6x (range 0.28–649) and for IFN- g a median of 32.9x (1–7243x). For pts with CRS, this increase in IL-6 was a median of 23.5x compared to 1.86x in pts without CRS (p=0.001); and in IFN- g was a median of 97.2xin pts with CRS compared to 24.2x without (p=0.018). Increasing CRS severity was associated with peak fold change in IL-6 (p< 0.0001) and IFN- g (p=0.015). Notably, unlike cytokine changes associated with sepsis, TNF-a did not markedly increase during CRS. CRS occurred with a consistent and often dramatic increase in ferritin, C reactive protein (CRP), and hemophagocytosis, suggesting concurrent macrophage activation syndrome (MAS). Increasing CRS severity was associated with an increasing trend for peak ferritin (log scale, p<0.001) and peak CRP (p<0.001). The median peak ferritin was 13,463 ng/ml in pts with CRS compared to 378 in pts without (p<0.001). Median peak CRP was 16 mg/dl in pts with CRS compared to 3.86 in pts without (p=0.002). CRS required intervention in 8 pts. 1 pt was successfully treated with corticosteroids. Given marked increases in IL-6, 7 patients received the IL6-receptor antagonist tocilizumab with or without corticosteroids with resolution of CRS. Tocilizumab was given to 1/7 pts with gr 2 CRS, 1/6 pts with gr 3 and 5/6 pts with gr 4. Several pts also received corticosteroids and/or etanercept. All pts had resolution of CRS signs with no TRM from CRS. CRS is the most significant complication of CTL019 and can be life threatening. A novel CRS grading system was needed to identify CRS severity more accurately guide intervention timing. CTL019-related CRS is associated with a unique cytokine profile and has been manageable with anti-cytokine therapy in pts with R/R CLL. CRS appears to correlate with response of CLL to CTL019. Further study is needed to develop reliable methods to predict severity and minimize CRS toxicity without inhibiting anti-leukemia activity of CTL019. New CRS Grading System for CTL019 Abstract 1983. Table Grade 1 Grade 2 Grade 3 Grade 4 Mild: Treated with supportive care such as anti-pyretics, anti-emetics Moderate: Requiring IV therapies or parenteral nutrition; some signs of organ dysfunction (i.e. gr 2 Cr or gr 3 LFTs) related to CRS and not attributable to any other condition. Hospitalization for management of CRS related symptoms including fevers with associated neutropenia. More severe: Hospitalization required for management of symptoms related to organ dysfunction including gr 4 LFTs or gr 3 Cr related to CRS and not attributable to any other conditions; this excludes management of fever or myalgias. Includes hypotension treated with IV fluids or low-dose pressors, coagulopathy requiring FFP or cryoprecipitate, and hypoxia requiring supplemental O2 (nasal cannula oxygen, high flow 02, CPAP or BiPAP). Pts admitted for management of suspected infection due to fevers and/or neutropenia may have gr 2 CRS. Life-threatening complications such as hypotension requiring “high dose pressors”, hypoxia requiring mechanical ventilation. Disclosures Porter: Novartis: Patents & Royalties, Research Funding; Genentech (spouse employment): Employment. Off Label Use: Use of genetically modified T cells (CTL019) to treat CLL and use of tocilizumab to treat cytokine release syndrome.. Lacey:Novartis: Research Funding. Hwang:NVS: Research Funding. Frey:Novartis: Research Funding. Chew:Novartis: Patents & Royalties, Research Funding. Chen:Novartis: Research Funding. Kalos:Novartis: Patents & Royalties, Research Funding. Gonzalez:Novartis: Research Funding. Melenhorst:Novartis: Research Funding. Litchman:Novartis: Employment. Shen:Novartis: Employment. Quintas-Cardamas:Novartis: Employment. Wood:Novartis Pharma: Employment. Levine:Novartis: Patents & Royalties, Research Funding. June:Novartis: Patents & Royalties, Research Funding. Grupp:Novartis: Research Funding.


2019 ◽  
Vol 15 (36) ◽  
pp. 4235-4246 ◽  
Author(s):  
Priya Hays ◽  
Caitlin Costello ◽  
Deepak Asudani

Chimeric antigen receptor (CAR) T-cell therapies are increasingly providing options for care of oncology patients with advanced hematologic malignancies, which has led to two US FDA approvals. However, they are often associated with significant immune related adverse events that require prompt management. These toxicities are mainly cytokine release syndrome and neurotoxicity, and can be managed in an appropriate setting when presenting to nononcologists or internists. This paper discusses patient management for these toxicities. A management approach can be determined by the severity of the toxicity. Tocilizumab, a humanized monoclonal antibody, was FDA approved for the treatment of cytokine release syndrome, and corticosteroids may be used. Neurotoxicity is generally managed with supportive care and steroidal therapy.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Norihide Fukushima

Despite the excellent long-term survival currently achieved in pediatric heart transplant recipients, posttransplant lymphoproliferative disorders (PTLDs) are one of the most important causes of morbidity and mortality after heart transplantation (HTx), especially in children. Timely and accurate diagnosis based on histological examination of biopsy tissue is essential for early intervention for PTLD. Chemotherapy is indicated for patients with poor response to reduction of immunosuppressive medication and for highly aggressive monomorphic PTLD. The use of rituximab in combination with chemotherapy is effective to suppress B cell type PTLD (B-PTLD). However, PTLD relapses frequently and the outcome is still poor. Although everolimus (EVL) has been reported to inhibit growth of human Epstein-Barr-virus- (EBV-) transformed B lymphocytes in vitro and in vivo, EVL has several side effects, such as delayed wound healing and an increase in bacterial infection. During combined treatment of chemotherapy and rituximab, B-PTLDs are sometimes associated with life-threatening complications, such as intestinal perforation and cardiogenic shock due to cytokine release syndrome. In HTx children especially treated with EVL, stoma should be made to avoid reoperation or sepsis in case of intestinal perforation. In cases with cardiac graft dysfunction possibly due to cytokine release syndrome by chemotherapy with rituximab for PTLD, plasma exchange is effective to restore cardiac function and to rescue the patients.


Blood ◽  
2013 ◽  
Vol 121 (26) ◽  
pp. 5154-5157 ◽  
Author(s):  
David T. Teachey ◽  
Susan R. Rheingold ◽  
Shannon L. Maude ◽  
Gerhard Zugmaier ◽  
David M. Barrett ◽  
...  

Key Points Cytokine release syndrome caused by T cell-directed therapies may be driven by abnormal macrophage activation and hemophagocytic syndrome. Cytokine-directed therapy can be effective against life-threatening cytokine release syndrome.


Sign in / Sign up

Export Citation Format

Share Document