scholarly journals Piezo1-Sensitive Biomechanical Pulsation Stimulates Long-Term Hematopoietic Stem Cell Formation

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3826-3826
Author(s):  
Giorgia Scapin ◽  
Jennifer Cillis ◽  
Taylor Patch ◽  
Priyanka R Dharampuriya ◽  
Elliott J. Hagedorn ◽  
...  

Abstract The birth and development of hemat\opoietic stem cells (HSCs) remain a mystery. During fetal development, a subset of endothelial cells transitions to become HSCs in the aorta-gonad-mesonephros (AGM) region. Blood flow-mediated shear stress and activation of nitric oxide synthase (NOS) were demonstrated to stimulate the endothelial-to-HSC transition in the AGM. However, we showed that malbec (mlbbw306), a zebrafish mutant for cadherin 5, produces HSCs despite circulation arrest and the inhibition of NOS, suggesting that other biomechanical forces, mechanosensation pathways, or epigenetic mechanisms might regulate HSC formation and could have utility in developing HSCs. Using zebrafish, murine, and human models, we show that Piezo1-sensitive biomechanical stretching of hemogenic endothelial cells enhances Dnmt3b expression for long-term (LT)-HSC formation. Our microangiography and time-lapse confocal imaging established that cdh5-MO embryos have a heartbeat and pulsation in blood vessels despite the absence of blood flow. We also employed light sheet and time-lapse confocal microscopy followed by Fourier transform analyses to establish that although pulsation is independent of blood flow in the AGM, it is concurrent with the endothelial-to-hematopoietic transition. To establish the functional link between pulsation and HSC formation, we developed a bioreactor simulating the pulsating blood vessel conditions. We found that the biomechanical stretching of hemogenic endothelial cells or the pharmacological activation of Piezo1 yields three times higher amounts of LT-HSC formation; which reconstitute to normal multi-lineage adult blood even upon serial transplantation. Our gene-silencing, time-lapse imaging, explant culture, and computational analyses further demonstrated that biomechanical stretching activates Piezo1; which enhances epigenetic regulator Dnmt3b expression to stimulate the endothelial-to-HSC transition. Our results demonstrate how pulsation-mediated biomechanical forces stimulate cell-fate transitions and stem cell formation by activating mechanosensitive channels as well as epigenetic machinery. We present a model that addresses major challenges in HSC transplantation and cellular therapies for treating blood and bone marrow diseases. In addition, we report a scalable bioreactor with potential widespread use and a pharmacological target to develop and expand LT-HSCs. Disclosures No relevant conflicts of interest to declare.

2020 ◽  
Vol 88 ◽  
pp. S51
Author(s):  
Wade Sugden ◽  
Vanessa Lundin ◽  
Lindsay Theodore ◽  
Patricia Sousa ◽  
Areum Han ◽  
...  

2020 ◽  
Vol 52 (4) ◽  
pp. 446-460.e5 ◽  
Author(s):  
Vanessa Lundin ◽  
Wade W. Sugden ◽  
Lindsay N. Theodore ◽  
Patricia M. Sousa ◽  
Areum Han ◽  
...  

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 445-445
Author(s):  
Giorgia Scapin ◽  
Dhvanit I Shah

The temporal and spatial origin and development of long-term, self-renewing hematopoietic stem cells (LT-HSC) remain a mystery. The first set of definitive HSCs is born from the hemogenic endothelial cells residing in the ventral wall of the dorsal aorta (DA) of the aorta-gonad-mesonephros region during embryonic development. Blood flow- and shear-stress-mediated nitric oxide-induced vasodilation are responsible for the endothelial-to-HSC transition (EHT). However, it remains unknown why the ventral wall, and not the dorsal wall, of the DA is the restricted site of the EHT when blood flows through the entire DA and exerts shear stress on both the ventral and dorsal sides of the DA. Using single-particle tracking and fast Fourier Transform analyses of pulsating blood vessels, we demonstrate that the circumferential strain in the ventral wall, and not dorsal wall, is concurrent with and responsible for the magnitude, the site, and timing of the HSC formation. We extended our findings by developing a bioreactor to establish the functional link between pulsation in the blood vessels and HSC formation. Using serial transplant, limiting dilution, and serial replating assays, we found that pulsation mediated circumferential stretching of hemogenic endothelial cells or Piezo1 activation (Yoda1) yields 3-times higher amounts of Long Term (LT)-HSC formation; which reconstitute to normal multi-lineage adult blood. Using delayed-type hypersensitivity assay, adult globin expression, MPO enzyme activity, immunoglobulins, and T-cell receptor rearrangement analyses, we found that circumferential stretching or Piezo1 activation-derived HSCs reconstitute to functional T and B cells, adult erythrocytes, and myeloid cells. Our Piezo1fl/flxScl-Cre conditional knockout, gene-silencing, & confocal imaging further demonstrate that circumferential stretching of blood vessels activates Piezo1; which enhances epigenetic regulator Dnmt3b expression to stimulate the EHT. Our CUT&RUN CHIP-Sequencing & MASSArray methylation analyses demonstrate that Dnmt3b suppresses endothelial genes during EHT. To analyze the conserved role of PIEZO1-mediated mechanosensitive mechanisms in human hematopoiesis, we employed directed differentiation of constitutive RUNX1-mCherry human induced pluripotent stem cells (iPSCs) to hemogenic endothelial cells. We found that Yoda1-mediated PIEZO1 activation stimulated human endothelial-to-hematopoietic transition. In conclusion, pulsation-mediated circumferential strain activates Piezo1 to stimulate the endothelial-to-HSC transition via the induction of Dnmt3b expression. This leads to the formation of long-term self-renewing HSCs, which can engraft and reconstitute to multi-lineage, adult blood upon serial transplantations. Our identification of a novel biomechanical cue unravels the physiological mystery in HSC formation in the ventral wall of the DA. We also establish its cross-talk with mechanosensitive and epigenetic mechanisms to produce functional, long-term HSCs that reconstitute to form normal adult blood. This yields the therapeutic promise of developing transgene-free LT-HSC-based cellular therapies for the treatment of human blood disorders. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1657-1657
Author(s):  
Mitsujiro Osawa ◽  
Michael Kyba

Abstract Hematopoietic and endothelial cells are thought to arise from a common progenitor termed the hemangioblast. Direct evidence for the hemangioblast was first obtained from embryonic stem cells differentiated in vitro as embryoid bodies (EBs). Flk-1+ cells from early EBs generate colonies in response to VEGF and SCF (the BL-CFC assay) which can be replated to give secondary hematopoietic or endothelial cells. Bipotent BL-CFCs have also recently been derived from the posterior primitive streak of neural plate stage mouse embryos. However, a direct relationship between the early embryonic hemangioblast defined by the BL-CFC assay and the hematopoietic stem cell remains unproven. Hemangioblast-derived hematopoiesis in vitro is transient and restricted to myelo-erythroid differentiation. Lymphoid potential and long-term repopulation, two hallmarks of the definitive hematopoietic stem cell, have eluded detection to date. Previous work has shown that the homeodomain transcription factor, HoxB4, by enhancing self-renewal in vitro, can reveal latent definitive HSC activity of transient embryonic hematopoietic progenitors. Using an ES cell line with doxycycline-inducible HoxB4 expression, we have investigated the definitive hematopoietic and endothelial potential of individual hemangioblast colonies. BL-CFC numbers were unaffected by HoxB4 expression during EB differentiation, however they were increased threefold by induction during the BL-CFC assay. By replating one half of the cells from an individual blast colony in endothelial medium and the other half on an OP9 monolayer with hematopoietic cytokines, we show that the majority (60%) of HoxB4-induced BL-CFCs are bipotent. HoxB4 expression was compatible with endothelial differentiation and allowed exponential expansion of hematopoietic progenitors on OP9 cocultures. When switched to OP9-DL1 with lymphoid cytokines, T-lymphopoiesis was observed characterized by CD25 expression followed by CD4, CD8, and CD3epsilon expression. To assay long-term repopulation, individual blast colonies were picked and divided into endothelial medium and OP9 monolayers. The hematopoietic arms of colonies defined retrospectively to have been bipotent (endothelial differentiation was observed in vitro) were transplanted into sublethally irradiated Rag2; gamma-c; CD45.1 immunodeficient mice. Mice with long-term hematopoietic engraftment were identified by the presence of CD45.2 cells in peripheral blood 3 months post-transplant. Lymphoid and myeloid contribution was evaluated by costaining with Gr-1, B220, CD19, CD4, and CD8. The donor-derived component of these hematopoietic chimeras, including their entire lymphoid arm (approximately 1/3 of engrafted mice showed lymphoid differentiation) is by definition clonally derived from a single hemangioblast. These results clearly show that the embryonic hemangioblast is not intrinsically limited in its hematopoietic potential. Under conditions that favor self-renewal, lymphoid differentiation and long-term repopulation become evident, revealing the link between endothelial development and definitive hematopoiesis at the clonal level.


2012 ◽  
Vol 103 (4) ◽  
pp. 356-366 ◽  
Author(s):  
Hui Lin Chua ◽  
P. Artur Plett ◽  
Carol H. Sampson ◽  
Mandar Joshi ◽  
Rebeka Tabbey ◽  
...  

2021 ◽  
Vol 10 (2) ◽  
pp. 293
Author(s):  
Gee-Hye Kim ◽  
Jihye Kwak ◽  
Sung Hee Kim ◽  
Hee Jung Kim ◽  
Hye Kyung Hong ◽  
...  

Umbilical cord blood (UCB) is used as a source of donor cells for hematopoietic stem cell (HSC) transplantation. The success of transplantation is dependent on the quality of cord blood (CB) units for maximizing the chance of engraftment. Improved outcomes following transplantation are associated with certain factors of cryopreserved CB units: total volume and total nucleated cell (TNC) count, mononuclear cell (MNC) count, and CD34+ cell count. The role of the storage period of CB units in determining the viability and counts of cells is less clear and is related to the quality of cryopreserved CB units. Herein, we demonstrate the recovery of viable TNCs and CD34+ cells, as well as the MNC viability in 20-year-old cryopreserved CB units in a CB bank (MEDIPOST Co., Ltd., Seongnam-si, Gyeonggi-do, Korea). In addition, cell populations in CB units were evaluated for future clinical applications. The stable recovery rate of the viability of cryopreserved CB that had been stored for up to 20 years suggested the possibility of uses of the long-term cryopreservation of CB units. Similar relationships were observed in the recovery of TNCs and CD34+ cells in units of cryopreserved and fresh CB. The high-viability recovery of long-term cryopreserved CB suggests that successful hematopoietic stem cell (HSC) transplantation and other clinical applications, which are suitable for treating incurable diseases, may be performed regardless of long-term storage.


2021 ◽  
Vol 132 (2) ◽  
pp. S107
Author(s):  
Niek P. van Til ◽  
Yildirim Dogan ◽  
Cecilia Barese ◽  
Zeenath Unnisa ◽  
Swaroopa Guda ◽  
...  

Author(s):  
Sini Luoma ◽  
Raija Silvennoinen ◽  
Auvo Rauhala ◽  
Riitta Niittyvuopio ◽  
Eeva Martelin ◽  
...  

AbstractThe role of allogeneic hematopoietic stem cell transplantation (allo-SCT) in multiple myeloma is controversial. We analyzed the results of 205 patients transplanted in one center during 2000–2017. Transplantation was performed on 75 patients without a previous autologous SCT (upfront-allo), on 74 as tandem transplant (auto-allo), and on 56 patients after relapse. Median overall survival (OS) was 9.9 years for upfront-allo, 11.2 years for auto-allo, and 3.9 years for the relapse group (p = 0.015). Progression-free survival (PFS) was 2.4, 2.4, and 0.9 years, respectively (p < 0.001). Non-relapse mortality at 5 years was 8% overall, with no significant difference between the groups. Post-relapse survival was 4.1 years for upfront-allo and auto-allo, and 2.6 years for the relapse group (p = 0.066). Survival of high-risk patients was reduced. In multivariate analysis, the auto-allo group had improved OS and chronic graft-versus-host disease was advantageous in terms of PFS, OS, and relapse incidence. Late relapses occurred in all groups. Allo-SCT resulted in long-term survival in a small subgroup of patients. Our results indicate that auto-allo-SCT is feasible and could be considered for younger patients in the upfront setting.


Sign in / Sign up

Export Citation Format

Share Document