scholarly journals Placental HTRA1 Protease Cleaves Alpha-1-Antitrypsin and Generates Neonatal NET-Inhibitory Factor

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 273-273
Author(s):  
Robert A. Campbell ◽  
Mark Cody ◽  
Yasuhiro Kosaka ◽  
Heather D Campbell ◽  
Christian Yost

Abstract BACKGROUND: Neutrophil extracellular traps (NET) are extracellular lattices of decondensed chromatin associated with anti-microbial proteins and degradative enzymes released by polymorphonuclear leukocytes (PMN) to trap and kill invading microbes. Dysregulated NET formation, however, contributes to inflammatory tissue damage. We have identified a novel NET-inhibitory peptide, neonatal NET-Inhibitory Factor (nNIF), present in the fetal circulation. nNIF is formed as a carboxy-terminus cleavage fragment of alpha-1 antitrypsin (AAT), an abundant, circulating protease inhibitor with homologs in human and mouse blood. However, the exact mechanisms by which nNIF is generated in fetal and neonatal blood remains unknown. OBJECTIVE: High temperature requirement A 1 (HTRA1) is expressed in the placenta during fetal development and inhibits AAT. We hypothesized that placentally expressed HTRA1, a serine protease, regulates the formation of NET-inhibitory peptides, such as nNIF, through cleavage of AAT. DESIGN/METHODS: Term and preterm placenta were lysed and probed for HTRA1 expression. HTRA1 and AAT plasma expression from term and preterm infants and adults were determined by ELISA. Recombinant, bioactive HTRA1 or placenta-eluted HTRA1 were incubated with AAT and the generation of carboxy-terminus fragments of AAT was assessed using western blotting and mass spectrometry. Fragments of AAT generated by HTRA1 were incubated with LPS-stimulated PMNs and NET formation was examined qualitatively using live cell imaging and quantitatively using a high throughput fluorescence assay. The effect of the HTRA-AAT cleavage fragment on reactive oxygen species generation, neutrophil chemotaxis, phagocytosis, and bacterial killing was measured using flow cytometry, a modified Boyden chamber asssay, neutrophil labeled Escherichia coli uptake assay, and a bacterial killing assay with a pathogenic strain of Escherichia coli, respectively. Finally, NET formation was evaluated qualitatively and quantitatively in murine PMNs isolated from neonatal WT and HTRA1-/- pups between 1-3, 4-6 and 7-10 days after birth to determine when PMNs become NET-competent. RESULTS: Term and preterm infant placentas express HTRA1, and we detected significantly (p<0.05) higher levels of HTRA1 in plasma from term (465.1±71.8 µg/mL) and preterm (385.9±71.3 µg/mL) infant cord blood compared to adults (58.6±11.6 µg/mL). Recombinant, bioactive HTRA1 and placenta-derived HTRA1 incubated with AAT generate a 4kD AAT fragment based on western blot and mass spectrometry similar to the nNIF fragment found in cord blood from term and preterm infants. Pre-incubation of this fragment with LPS-stimulated PMNs significantly inhibits NET formation (p<0.05). The cleavage fragment from HTRA1-AAT, however, has no effect on reactive oxygen species generation, chemotaxis, or phagocytosis. However, incubation of this fragment with LPS-stimulated PMNs significantly (p<0.05) reduces NET-associated bacterial killing by 62% compared to a scrambled HTRA-AAT control peptide. In addition, the HTRA1-AAT fragment significantly (p<0.05) reduces nuclear decondensation by 93% compared to LPS-stimulated PMN, suggesting this fragment inhibits PAD4 activation similar to other NIFs previously examined. Neonatal murine plasma contains a 4kD AAT fragment which inhibits NET formation by adult mouse PMNs, indicating that nNIF generation is conserved in mice. Neonatal PMNs stimulated with LPS exhibit delayed NET formation following birth with PMNs becoming NET-competent by day 8 of life. However, neonatal PMNs from pups born from HTRA1-/- deficient mice generate significantly (p<0.05) more NETs between day 4-6 of life compared to WT controls, suggesting that HTRA1 regulates NET formation through nNIF production. CONCLUSIONS: Placental HTRA1 interacts with AAT to generate a carboxy-terminus cleavage fragment of AAT with identical NET-inhibitory properties to nNIF. Our data strongly indicate that placental HTRA1 generates nNIF in the fetal circulation. We speculate that nNIF participates in the required tolerance to new microbial antigens encountered during the transition to extrauterine life. Disclosures No relevant conflicts of interest to declare.

2020 ◽  
Vol 12 (14) ◽  
pp. 16150-16158 ◽  
Author(s):  
Qi Jiang ◽  
Fangjie E ◽  
Jingxiao Tian ◽  
Jiangtao Yang ◽  
Jiangyan Zhang ◽  
...  

2018 ◽  
Author(s):  
Hayden H. Ware ◽  
Vikram V. Kulkarni ◽  
Yongxing Wang ◽  
Miguel Leiva Juarez ◽  
Carson T. Kirkpatrick ◽  
...  

ABSTRACTPneumonia remains a global health threat, in part due to expanding categories of susceptible individuals and increasing prevalence of antibiotic resistant pathogens. However, therapeutic stimulation of the lungs’ mucosal defenses by inhaled exposure to a synergistic combination of Toll-like receptor (TLR) agonists known as Pam2-ODN promotes mouse survival of pneumonia caused by a wide array of pathogens. This inducible resistance to pneumonia relies on intact lung epithelial TLR signaling, and inducible protection against viral pathogens has recently been shown to require increased production of epithelial reactive oxygen species (ROS) from multiple epithelial ROS generators. To determine whether similar mechanisms contribute to inducible antibacterial responses, the current work investigates the role of ROS in therapeutically-stimulated protection against Pseudomonas aerugnosa challenges. Inhaled Pam2-ODN treatment one day before infection prevented hemorrhagic lung cytotoxicity and mouse death in a manner that correlated with reduction in bacterial burden. The bacterial killing effect of Pam2-ODN was recapitulated in isolated mouse and human lung epithelial cells, and the protection correlated with inducible epithelial generation of ROS. Scavenging or targeted blockade of ROS production from either dual oxidase or mitochondrial sources resulted in near complete loss of Pam2-ODN-induced bacterial killing, whereas deficiency of induced antimicrobial peptides had little effect. These findings support a central role for multisource epithelial ROS in inducible resistance against bacterial pathogens and provide mechanistic insights into means to protect vulnerable patients against lethal infections.


The eff ect of the non-opiate analog of leu-enkephalin (peptide NALE: Phe – D – Ala – Gly – Phe – Leu – Arg) on the reactive oxygen species generation in the heart of albino rats in the early postnatal period was studied. Peptide NALE was administered intraperitoneally in the dose of 100 μ/kg daily from 2 to 6 days of life. Reactive oxygen species generation was assessed by chemiluminescence in the heart homogenates of 7-day-old animals. Decreasing of reactive oxygen species generation nearly by 30 % and an increasing in antioxidant system activity by the 20-27 %, compared with the control parameters, were found. The antioxidant eff ect of peptide NALE is associated with the presence of the amino acid Arg in the structure of the peptide. An analogue of NALE peptide, devoid of Arg (peptide Phe – D – Ala – Gly – Phe – Leu – Gly), had a signifi cant lower antioxidant eff ect. The NO-synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) in the dose 50 mg/kg, administered with NALE peptide, reduced the severity of the NALE antioxidant eff ect. The results of the study suggest that the pronounced antioxidant eff ect of NALE peptide in the heart of albino rats, at least in part, is due to the interaction with the nitric oxide system.


Sign in / Sign up

Export Citation Format

Share Document