scholarly journals Clonal Cytopenias of Undetermined Significance Are Common in Cytopenic Adults Evaluated for MDS in the National MDS Study

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4271-4271
Author(s):  
Johannes B Goll ◽  
R. Coleman Lindsley ◽  
William F. Hooper ◽  
Rafael Bejar ◽  
Jason Walker ◽  
...  

Introduction: Myelodysplastic syndromes (MDS) are a heterogenous group of blood disorders defined by peripheral cytopenia(s), bone marrow failure, morphological dysplasia, and risk of progression. To understand the genetic, epigenetic and biological factors associated with the initiation and progression of MDS, NHLBI created the National MDS Study (NCT02775383). This is a prospective cohort study conducted at 92 community hospitals and 29 academic centers enrolling patients undergoing diagnostic work up for suspected MDS or MDS/myeloproliferative neoplasm (MPN) overlap syndrome. Eligible patients have yet to receive any therapy directed at their cytopenias. Previously untreated cytopenic participants underwent centralized histopathology and data review at the time of enrollment for assignment into distinct subcategories: MDS, MDS/MPN overlap, AML, and Other. Targeted exon sequencing of 96 genes was performed using marrow specimens from the first 300 consecutive individuals in the study. Here we report the genetic mutations for this cohort. Methods: NovaSeq 6000 was used for deep sequencing at a mean coverage of 1,286X and mean breadth (bases covered at ≥100X) of 99.8%. Reads were aligned against build GRCh38 using BWA-MEM, and VarScan2 was used to detect SNVs and INDELS. Variants were filtered for those with an allele base quality of >25 in combination with rule-based and manual review criteria. Subjects in the Other category without an identified malignancy were considered clonal cytopenias of undetermined significance (CCUS) when a mutation or a clonal cytogenetic change was present. Fisher's exact and Wilcoxon rank sum tests in combination with Bonferroni correction were applied to compare groups. Results : A total of 350 putative nonsynonymous pathogenic variants in 36 genes with an allele frequency of >.05 were identified across 150 patients (50%). At least one variant was noted in the following proportion of individuals: 61/72 (85%) with MDS, 13/13 (100%) with MDS/MPN, 15/17 (88%) with AML, and 61/198 (31%) in the Other category, of which 48 were CCUS and 13 were other cancers. Two CCUS patients only had a cytogenetic abnormality. Table 1 shows the distribution of variants in each subcategory of patients for the most commonly mutated genes in our cohort of 300 subjects. Mutations in these genes were enriched in specific groups: SF3B1, STAG2,TP53, and ASXL1 in MDS; TET2 in MDS/MPN; and IDH2 and TP53 in AML (one-sided p<0.0012). None were enriched in the Other group. Within the CCUS subset, 21 genes were mutated, with 37 of 50 (74%) patients having a mutation in TET2, ASXL1, SRSF2, SF3B1, or DNMT3A. The heatmap presented in Figure 1 summarizes variants by subject and allele frequency. Pair-wise comparisons of baseline characteristics of subjects between MDS, MDS/MPN, AML, or CCUS groups revealed no significant differences for age or sex. The CCUS group had significantly higher hemoglobins than the MDS group with median hemoglobin levels of 11.35 and 9.40 g/dL, respectively (p<0.0084). AML had significantly lower platelets compared to all other groups (median of 53 vs. > 110x109/L , respectively, p<0.0084). All groups significantly differed in their median ANC with AML having the lowest (0.8x109/L), followed by MDS (1.5x109/L), CCUS (2.45x109/L), and MDS/MPN overlap (5.95x109/L) (p<0.0084). There was no difference in the median number of variants per patient between groups or correlation with age (rs=0.11, p=0.18). The maximum variant allele frequency (maxVAF) per patient was highest in the MDS/MPN group (median = 0.42, range = 0.38-0.91) and lowest in the CCUS group (median = 0.37, range =0.06-0.98) with the MDS/MPN group having a significantly higher maxVAF compared to the MDS and the CCUS groups (p<0.0084). The proportions of subjects with mutations was similar for those who had abnormal (92% [34/37]) and normal (91% [80/88]) cytogenetics. Conclusions: Incorporation of gene-panel sequencing in the comprehensive evaluation of 300 adult cytopenic patients identified half of the cohort with potentially pathogenic variants. Ultimately, a diagnosis of CCUS was possible in 48 of 183 subjects (26%) not diagnosed with MDS, MDS/MPN overlap syndrome, AML, other cancers or clonal cytogenetics. This study continues to serially bank samples from patients with CCUS, in addition to MDS, MDS/MPN, and ICUS, with the goal to better understand the natural history of these diseases and their progression. Disclosures Lindsley: Jazz Pharmaceuticals: Research Funding; Takeda Pharmaceuticals: Consultancy; Medlmmune: Research Funding. Bejar:Celgene: Consultancy; Takeda Pharmaceuticals: Research Funding; AbbVie/Genentech: Consultancy, Honoraria; Astex/Otsuka: Consultancy; Modus Outcomes: Consultancy; Daiichi-Sankyo: Consultancy. Al Baghdadi:Celgene: Consultancy, Honoraria; Heron: Consultancy, Honoraria; Tracon: Equity Ownership; Epizyme: Equity Ownership; Bristol Myer Squibb: Consultancy, Honoraria; Sunesis: Equity Ownership; Portola: Equity Ownership; Heron therapeutics: Equity Ownership; Cardinal health: Consultancy, Honoraria; Bristol Myer Squibb: Equity Ownership; Celgene: Equity Ownership; Spectrum pharmaceutical: Equity Ownership; Astrazeneca: Equity Ownership; Seattle genetics: Equity Ownership; Roche: Consultancy, Honoraria. DeZern:Astex Pharmaceuticals, Inc.: Consultancy; Celgene: Consultancy. Foran:Agios: Honoraria, Research Funding. Gore:Celgene Corporation: Consultancy, Research Funding. Komrokji:DSI: Consultancy; Agios: Consultancy; Novartis: Speakers Bureau; JAZZ: Speakers Bureau; pfizer: Consultancy; celgene: Consultancy; Incyte: Consultancy; JAZZ: Consultancy. Maciejewski:Alexion: Consultancy; Novartis: Consultancy. Starczynowski:Kurome Therapeutics: Consultancy. Sekeres:Millenium: Membership on an entity's Board of Directors or advisory committees; Syros: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2992-2992
Author(s):  
Yasunobu Nagata ◽  
Hideki Makishima ◽  
Cassandra M Kerr ◽  
Bhumika J. Patel ◽  
Hassan Awada ◽  
...  

Myelodysplastic syndromes (MDS) arise in older adults through the stepwise acquisition of multiple somatic mutations. The genetic heterogeneity that results includes mutations of diverse genes and their combinations, clonal hierarchy, genetic configuration (e.g., bi-allelic or compound heterozygous, hemizygous lesions), specific positions within a gene including canonical hotspots vs. other positions, and types of mutation (truncations vs. missense), all of which could differentially affect pathogenesis. Given the binary status (e.g. mutated vs. wild-type) used in many clinical analyses, the true impact of specific types of mutations may be obscured and their specific roles underestimated. Deep targeted NGS was carried out for a panel of the 36 most frequently mutated genes in 1,809 MDS patients (low-risk MDS (n=839) vs. high-risk MDS (n=607), MDS/MPN (n=212), and sAML n=151). Copy number alterations (CNA) were also evaluated by combining karyotyping, microarray, and digital copy number analysis. With a mean coverage of 862x, after removing SNPs and errors, 3,971 somatic mutations were identified, the most common (>10% of cases) being TET2, SF3B1, ASXL1, del(5q), SRSF2, complex karyotype, and del(7q). For the purpose of this proof of concept analysis we focused on illustrative genes (TP53, RUNX1, TET2, and EZH2) affected by 2 recurrent hits. Bi-allelic TET2 or TP53 mutations were found in 15% (271/1,809) and 4% (72/1,809) of patients, respectively. TET2 and RUNX1 were most likely biallelic, whereas TP53 and EZH2 were most often affected by mutations and somatic deletion. Comparing the distribution of canonical vs. other types of mutations in genes, DNMT3A mutations affected the canonical site (R882) in 17% (35/203) of patients, were truncating in 39% (79/203) and missense in 44% (89/203) have also been found; deletions affecting the DNMT3A locus are rare. Within U2AF1, U2AF1Q157 are more frequent than U2AF1S34 (54% vs. 35%). Next, we checked correlation between these different types of mutations of one gene. 78 significant combinations were found. For instance, U2AF1Q157 mutations more commonly accompanied ASXL1 mutations and del(7q) and less frequently DNMT3A and BCOR mutations, trisomy8 and del(20) when compared to U2AF1S34 mutations [ASXL1 mutations 53% (42/80) in U2AF1Q157 vs. 16% (8/49) in U2AF1S34, P < .0001]. TET2 Bi-allelic mutations were more commonly associated with ZRSR2 and SRSF2 mutations, and less frequently del(5q) when compared to TET2 mono-allelic mutations [SRSF2 mutations 29% (80/276) in TET2-bi vs. 15% (34/227) in TET2-mono, P = .003]. In addition, patients with SRSF2 missense mutations were more likely to have RUNX1 bi-allelic mutations than those with SRSF2 in-frame mutations. We evaluated the impact of different types of mutations and combinations of them on disease phenotypes and survival. We then evaluated the impact of different types of mutations and their combinations on clinical phenotypes including dichotomous morphological (MDS vs. MDS/MPN) features, progressive (low- vs. high risk) subtypes. EZH2 bi-allelic alterations were more commonly associated with myleoproliferative features` compared to EZH2 mono-allelic alteration (q=.016). TET2 bi-allelic alterations and truncating mutations were found more frequently in higher-risk subtypes than TET2 mono-allelic and missense mutations (q<.001). In survival analyses, patients with DNMT3AR882 mutations had a poorer prognosis than those with truncating and the other missense mutations [P = .033, HR 1.86 (1.05-3.3)]. Next, using the PyClone bioanalytic pipeline, we recapitulated for each patient the clonal hierarchy and defined "dominant" vs. "secondary" mutations. DNMT3AR882 mutations were likely to be dominant/founder lesions compared to truncating or the other missense mutations: 77% (27/35) for R882 vs. 51% (40/79) for truncating vs. 45% (47/98) for the other missense, p=.0046. Specific dominant and secondary mutational pairs also differentially affected survival compared to the reverse configuration (q<.1) including EZH2 and RUNX1 or BCOR and U2AF1 or RUNX1 and BCOR. In conclusion, we report a comprehensive analysis of various types and configurations of lesions of individual commonly affected genes. Our results indicate that establishment of clinical or phenotypic correlations requires consideration of the type, rank and configuration of somatic mutations. Disclosures Mukherjee: McGraw Hill Hematology Oncology Board Review: Other: Editor; Bristol-Myers Squibb: Speakers Bureau; Takeda: Membership on an entity's Board of Directors or advisory committees; Pfizer: Honoraria; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Projects in Knowledge: Honoraria; Celgene Corporation: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Partnership for Health Analytic Research, LLC (PHAR, LLC): Consultancy. Nazha:Incyte: Speakers Bureau; Daiichi Sankyo: Consultancy; Jazz Pharmacutical: Research Funding; Tolero, Karyopharma: Honoraria; Abbvie: Consultancy; MEI: Other: Data monitoring Committee; Novartis: Speakers Bureau. Sekeres:Millenium: Membership on an entity's Board of Directors or advisory committees; Syros: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees. Ogawa:Asahi Genomics: Equity Ownership; Dainippon-Sumitomo Pharmaceutical, Inc.: Research Funding; Qiagen Corporation: Patents & Royalties; RegCell Corporation: Equity Ownership; ChordiaTherapeutics, Inc.: Consultancy, Equity Ownership; Kan Research Laboratory, Inc.: Consultancy. Maciejewski:Novartis: Consultancy; Alexion: Consultancy.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1479-1479
Author(s):  
Eran Tallis ◽  
Christopher B. Benton ◽  
Abir Khan ◽  
Rita Assi ◽  
Courtney D. DiNardo ◽  
...  

Abstract INTRODUCTION The TET2 (Ten‐Eleven Translocation 2) gene, located at chromosome 4q24.1, belongs to TET family of proteins that possesses the capacity of catalyzing the conversion of 5‐methylcytosine into 5‐hydroxymethylcytosine. It is considered to be a putative tumor suppressor gene during cancer initiation and development. TET2 mutations are extensively studied and reported in a variety of human hematological malignancies including acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS), suggesting a crucial role of TET2 in the pathogenesis of blood cancers. The landscape of rare TET2 variants which may be of potential clinical relevance is not fully described. The landscape of TET2 variants from a large cohort of MDS and AML patients was explored. METHODS We analyzed data from bone marrow samples of 2634 patients with AML or MDS who presented at MD Anderson between the years 2012-2016. Seven hundred seventy seven patients were found to have TET2 variants that were not classifiable as known mutations. Two hundred sixty-three patients were diagnosed with MDS, 144 with secondary AML transformed from MDS, and 370 with AML without prior history of MDS. The coding regions of TET2 gene was analyzed by next-generation sequencing in the molecular diagnostics laboratory. Non-mutation variants were classified into 2 groups: 1) those reported as germline polymorphisms (GP) in population studies, literature or matched tumor-normal analysis on patients at MDACC; and 2) variants for which a germline versus somatic origin could not be determined unequivocally (variants of uncertain origin, VUO). Very common GP variants (defined as those with a population frequency of over 20% in laboratory sample cohort) were not evaluated. Variants' predicted frequency in the population according to gnomAD Exomes 2.0.2, and classification according to American College of Medical Genetics and Genomics (ACMG) guidelines for interpretation of sequence variants, were assessed using the VarSome platform by Saphetor. RESULTS Two-hundred and twenty-eight unique variants were identified. The amino acid substitutions from missense variants were widely distributed throughout TET2. Fifty-four unique variants were classified as GP and several of these recurrent variants were found to be present in our population at a significantly higher frequency (p<0.0001-0.03) than expected based on population sequencing. Within this group, 37 (69%) were missense, 8 (15%) frameshift (fs), 5 (9%) nonsense, and 4 (7%) splice-site. By ACMG classification 10 (27%) of these missense variants were benign, 27 (73%) were uncertain significance (US), and none pathogenic. Benign variants were shared across MDS, MDS to AML, and AML groups. Thirty-seven percent of the variants of US were shared across the groups whereas frameshift and nonsense variants were not shared between groups and were primarily observed in AML patients. One-hundred and seventy-four unique variants classified as VUO were found. Most such variants (110 [63%]) were found in MDS patients, while 32 (29%) were found in the transformed MDS/AML group and 36 (33%) in AML patients. There was a statistically significant higher fraction of VUO in the MDS pts vs AML and AML/MDS pts when compared in the initial 2634 patients (9% vs. 5%, p=0.0002). Among VUO, 105 (60%) were missense, 47 (27%) fs, 12 (7%) nonsense, and 10 (6%) splice-site. In the missense group, none were classified as benign variants, 86 (82%) variants of US, and 19 (18%) pathogenic variants. CONCLUSIONS The landscape of rare TET2 variants in a large group of MDS and AML patients was frequent, diverse, and included both GP and VUO. GP variants were more likely benign by ACMG classification and found in both MDS and AML patients. A large number of singleton VUO were found among MDS patients, and many were predicted to be pathogenic or had uncertain significance. VUO's also contained many fs and nonsense variants. These result support the idea that rare pathogenic variants in TET2 are currently underrecognized as contributory, although they are likely to help drive leukemogenesis. Greater understanding of the importance of individual TET2 variants and additional classification metrics are needed. Disclosures DiNardo: Karyopharm: Honoraria; Abbvie: Honoraria; Agios: Consultancy; Medimmune: Honoraria; Celgene: Honoraria; Bayer: Honoraria. Daver:Karyopharm: Research Funding; Incyte: Consultancy; Novartis: Consultancy; ImmunoGen: Consultancy; Sunesis: Consultancy; Pfizer: Consultancy; Daiichi-Sankyo: Research Funding; Kiromic: Research Funding; Alexion: Consultancy; Otsuka: Consultancy; Sunesis: Research Funding; Incyte: Research Funding; ARIAD: Research Funding; BMS: Research Funding; Karyopharm: Consultancy; Novartis: Research Funding; Pfizer: Research Funding. Kadia:Celgene: Research Funding; Takeda: Consultancy; BMS: Research Funding; Abbvie: Consultancy; Novartis: Consultancy; Novartis: Consultancy; Amgen: Consultancy, Research Funding; Jazz: Consultancy, Research Funding; Abbvie: Consultancy; Pfizer: Consultancy, Research Funding; Takeda: Consultancy; Amgen: Consultancy, Research Funding; BMS: Research Funding; Pfizer: Consultancy, Research Funding; Jazz: Consultancy, Research Funding; Celgene: Research Funding. Konopleva:Stemline Therapeutics: Research Funding; abbvie: Research Funding; cellectis: Research Funding; Immunogen: Research Funding. Andreeff:Amgen: Consultancy, Research Funding; Astra Zeneca: Research Funding; Jazz Pharma: Consultancy; Oncolyze: Equity Ownership; Aptose: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Oncoceutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; SentiBio: Equity Ownership; United Therapeutics: Patents & Royalties: GD2 inhibition in breast cancer ; Reata: Equity Ownership; Celgene: Consultancy; Eutropics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Daiichi-Sankyo: Consultancy, Patents & Royalties: MDM2 inhibitor activity patent, Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4797-4797
Author(s):  
Austin Kulasekararaj ◽  
Wynne Weston-Davies ◽  
Tadeusz Robak ◽  
Miles Nunn ◽  
Agnieszka Piekarska ◽  
...  

BACKGROUND Nomacopan, a small protein biologic previously known as Coversin (AK576), is in Phase III clinical development for PNH. Patients completing COBALT, a three-month Phase II trial in complement inhibitor naïve PNH patients, were eligible to move into CONSERVE, a long-term safety and efficacy surveillance study. Seven of 8 patients completed COBALT and all moved into the long-term safety study and received treatment with nomacopan for between 20 and 28 months. Six of the patients were transfusion dependent prior to treatment with nomacopan. METHODS The haematological, clinical and safety results of patients in CONSERVE have been analysed. RESULTS: All patients showed reduction of intravascular haemolysis as evidenced by significant fall of lactate dehydrogenase (LDH) levels and stabilisation of haemoglobin between 1 to 19 months. Of 6 patients who were transfusion dependent prior to entry to COBALT 3 (50%) became transfusion independent during the 12 week trial and 1 became transfusion independent in the 6 months following the trial. All 4 of these patients have remained transfusion independent. Since January 2019 both of the last two transfusion-dependent patients have been transfusion independent for more than 6 months. Patients in COBALT and CONSERVE have had no drug related serious adverse events, no major adverse vascular events, complete inhibition of terminal complement activity at all time points and the drug has been well tolerated. SUMMARY AND CONCLUSIONS: Long term complement inhibition with eculizumab is known to result in reduction of transfusion requirements in patients with PNH. In a 66-month long-term study of PNH patients treated with eculizumab, 64 of 78 (82.1%) previously transfusion dependent patients achieved transfusion independence. [i] In this, much smaller study, 6 of 6 previously transfusion dependent patients stabilised their haemoglobin and became transfusion independent (defined here as no transfusion for 6 or more months), two of these finally reaching this point between 18 and 21 months after starting treatment. The data indicate that nomacopan is safe and well tolerated for long term treatment of PNH by patient self-administration and offers significant therapeutic benefit to patients in terms of transfusion independence, an outcome of key importance to clinicians. It is possible that nomacopan may assist in improving bone marrow activity through its inhibition of LTB4 and the effect on the innate immune system which has been linked to bone marrow failure and clonal deletion and recovery. [ii] [iii] [i] Hillmen P et al. Long-term safety and efficacy of sustained eculizumab treatment in patients with paroxysmal nocturnal haemoglobinuria. Br J Haematol 2013 162(1) 62-73 [ii] Bagby GC. The Role of Innate Immune Dysfunction in Inherited Bone Marrow Failure. Blood 2014 124:SCI-19; [iii] Trompouki E et al. Inflammatory signaling in bone marrow failure and hematopoietic malignancy (Editorial) Front. Immunol. 2017: 8(660). Disclosures Kulasekararaj: Alnylam: Membership on an entity's Board of Directors or advisory committees; Ra Pharma: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Achillion: Consultancy; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Amgen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Akari: Honoraria, Membership on an entity's Board of Directors or advisory committees; Alexion: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Weston-Davies:Akari Therapeutics Plc: Employment, Equity Ownership. Robak:Acerta: Research Funding; Morphosys AG: Research Funding; Takeda: Consultancy, Research Funding; UCB: Honoraria, Research Funding; Janssen: Consultancy, Honoraria, Other: Travel grant, Research Funding; Amgen: Consultancy, Other: Travel grant; Roche: Consultancy, Other: Travel grant, Research Funding; Abbvie: Consultancy, Honoraria, Other: Travel grant, Research Funding; Gilead: Consultancy, Research Funding; BeiGene: Consultancy, Research Funding. Nunn:Akari Therapeutics Plc: Employment, Equity Ownership. Szmigielska-Kaplon:Novartis: Consultancy, Honoraria; Alexion: Honoraria; Sanofi: Consultancy, Honoraria. Hill:Apellis: Honoraria; Alexion: Honoraria; Akari: Honoraria; Ra Pharma: Honoraria; Bioverativ: Honoraria; Roche: Honoraria; Regeneron: Honoraria; Novartis: Honoraria.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1961-1961
Author(s):  
John F. DiPersio ◽  
Jonathan Hoggatt ◽  
Steven Devine ◽  
Lukasz Biernat ◽  
Haley Howell ◽  
...  

Background Granulocyte colony-stimulating factor (G-CSF) is the standard of care for mobilization of hematopoietic stem cells (HSCs). G-CSF requires 4-7 days of injections and often multiple aphereses to acquire sufficient CD34+ cells for transplant. The number of CD34+ HSCs mobilized can be variable and patients who fail to mobilize enough CD34+ cells are treated with the combination of G-CSF plus plerixafor. G-CSF use is associated with bone pain, nausea, headaches, fatigue, rare episodes of splenic rupture, and is contraindicated for patients with autoimmune and sickle cell disease. MGTA-145 (GroβT) is a CXCR2 agonist. MGTA-145, in combination with plerixafor, a CXCR4 inhibitor, has the potential to rapidly and reliably mobilize robust numbers of HSCs with a single dose and same-day apheresis for transplant that is free from G-CSF. MGTA-145 plus plerixafor work synergistically to rapidly mobilize HSCs in both mice and non-human primates (Hoggatt, Cell 2018; Goncalves, Blood 2018). Based on these data, Magenta initiated a Phase 1 dose-escalating study to evaluate the safety, PK and PD of MGTA-145 as a single agent and in combination with plerixafor. Methods This study consists of four parts. In Part A, healthy volunteers were dosed with MGTA-145 (0.0075 - 0.3 mg/kg) or placebo. In Part B, MGTA-145 dose levels from Part A were selected for use in combination with a clinically approved dose of plerixafor. In Part C, a single dose MGTA-145 plus plerixafor will be administered on day 1 and day 2. In Part D, MGTA-145 plus plerixafor will be administered followed by apheresis. Results MGTA-145 monotherapy was well tolerated in all subjects dosed (Table 1) with no significant adverse events. Some subjects experienced mild (Grade 1) transient lower back pain that dissipated within minutes. In the ongoing study, the combination of MGTA-145 with plerixafor was well tolerated, with some donors experiencing Grade 1 and 2 gastrointestinal adverse events commonly observed with plerixafor alone. Pharmacokinetic (PK) exposure and maximum plasma concentrations increased dose proportionally and were not affected by plerixafor (Fig 1A). Monotherapy of MGTA-145 resulted in an immediate increase in neutrophils (Fig 1B) and release of plasma MMP-9 (Fig 1C). Neutrophil mobilization plateaued within 1-hour post MGTA-145 at doses greater than 0.03 mg/kg. This plateau was followed by a rebound of neutrophil mobilization which correlated with re-expression of CXCR2 and presence of MGTA-145 at pharmacologically active levels. Markers of neutrophil activation were relatively unchanged (<2-fold vs baseline). A rapid and statistically significant increase in CD34+ cells occurred @ 0.03 and 0.075 mg/kg of MGTA-145 (p < 0.01) relative to placebo with peak mobilization (Fig 1D) 30 minutes post MGTA-145 (7-fold above baseline @ 0.03 mg/kg). To date, the combination of MGTA-145 plus plerixafor mobilized >20/µl CD34s in 92% (11/12) subjects compared to 50% (2/4) subjects receiving plerixafor alone. Preliminary data show that there was a significant increase in fold change relative to baseline in CD34+ cells (27x vs 13x) and phenotypic CD34+CD90+CD45RA- HSCs (38x vs 22x) mobilized by MGTA-145 with plerixafor. Mobilized CD34+ cells were detectable at 15 minutes with peak mobilization shifted 2 - 4 hours earlier for the combination vs plerixafor alone (4 - 6h vs 8 - 12h). Detailed results of single dose administration of MGTA-145 and plerixafor given on one day as well as also on two sequential days will be presented along with fully characterized graft analysis post apheresis from subjects given MGTA-145 and plerixafor. Conclusions MGTA-145 is safe and well tolerated, as a monotherapy and in combination with plerixafor and induced rapid and robust mobilization of significant numbers of HSCs with a single dose in all subjects to date. Kinetics of CD34+ cell mobilization for the combination was immediate (4x increase vs no change for plerixafor alone @ 15 min) suggesting the mechanism of action of MGTA-145 plus plerixafor is different from plerixafor alone. Preliminary data demonstrate that MGTA-145 when combined with plerixafor results in a significant increase in CD34+ fold change relative to plerixafor alone. Magenta Therapeutics intends to develop MGTA-145 as a first line mobilization product for blood cancers, autoimmune and genetic diseases and plans a Phase 2 study in multiple myeloma and non-Hodgkin lymphoma in 2020. Disclosures DiPersio: Magenta Therapeutics: Equity Ownership; NeoImmune Tech: Research Funding; Cellworks Group, Inc.: Membership on an entity's Board of Directors or advisory committees; Karyopharm Therapeutics: Consultancy; Incyte: Consultancy, Research Funding; RiverVest Venture Partners Arch Oncology: Consultancy, Membership on an entity's Board of Directors or advisory committees; WUGEN: Equity Ownership, Patents & Royalties, Research Funding; Macrogenics: Research Funding, Speakers Bureau; Bioline Rx: Research Funding, Speakers Bureau; Celgene: Consultancy; Amphivena Therapeutics: Consultancy, Research Funding. Hoggatt:Magenta Therapeutics: Consultancy, Equity Ownership, Research Funding. Devine:Kiadis Pharma: Other: Protocol development (via institution); Bristol Myers: Other: Grant for monitoring support & travel support; Magenta Therapeutics: Other: Travel support for advisory board; My employer (National Marrow Donor Program) has equity interest in Magenta. Biernat:Medpace, Inc.: Employment. Howell:Magenta Therapeutics: Employment, Equity Ownership. Schmelmer:Magenta Therapeutics: Employment, Equity Ownership. Neale:Magenta Therapeutics: Employment, Equity Ownership. Boitano:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties. Cooke:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties. Goncalves:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties. Raffel:Magenta Therapeutics: Employment, Equity Ownership. Falahee:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties. Morrow:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties. Davis:Magenta Therapeutics: Employment, Equity Ownership.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3129-3129
Author(s):  
Hans C. Lee ◽  
Sikander Ailawadhi ◽  
Cristina Gasparetto ◽  
Sundar Jagannath ◽  
Robert M. Rifkin ◽  
...  

Background: Multiple myeloma (MM) is common among the elderly, with 35% of patients (pts) diagnosed being aged ≥75 years (y). With increasing overall life expectancy, the incidence and prevalence of newly diagnosed and previously treated MM patients ≥80 y is expected to increase over time. Because elderly pts are often excluded from clinical trials, data focused on their treatment patterns and clinical outcomes are lacking. The Connect® MM Registry (NCT01081028) is a large, US, multicenter, prospective observational cohort study of pts with newly diagnosed MM (NDMM) designed to examine real-world diagnostic patterns, treatment patterns, clinical outcomes, and health-related quality of life patient-reported outcomes. This analysis reviews treatment patterns and outcomes in elderly pts from the Connect MM Registry. Methods: Pts enrolled in the Connect MM registry at 250 community, academic, and government sites were included in this analysis. Eligible pts were adults aged ≥18 y with symptomatic MM diagnosed ≤2 months before enrollment, as defined by International Myeloma Working Group criteria; no exclusion criteria were applied. For this analysis, pts were categorized into 4 age groups: <65, 65 to 74, 75 to 84, and ≥85 y. Pts were followed from time of enrollment to the earliest of disease progression (or death), loss to follow-up, or data cutoff date of February 7, 2019. Descriptive statistics were used for baseline characteristics and treatment regimens. Survival outcomes were analyzed using Cox regression. Time to progression (TTP) analysis excluded causes of death not related to MM. Results: Of 3011 pts enrolled (median age 67 y), 132 (4%) were aged ≥85 y, and 615 (20%) were aged 75-84 y at baseline. More pts aged ≥85 y had poor prognostic factors such as ISS stage III disease and reduced hemoglobin (<10 g/dL or >2 g/dL <LLN) compared with other age groups, although no notable differences between creatinine and calcium levels were observed across age groups (Table). A lower proportion of elderly pts (75-84 and ≥85 y) received triplet regimens as frontline therapy. More elderly pts received a single novel agent, whereas use of 2 novel agents was more common in younger pts (Table). The most common frontline regimens among elderly pts were bortezomib (V) + dexamethasone (D), followed by lenalidomide (R) + D, whereas those among younger pts included RVD, followed by VD and CyBorD (Table). No pt aged ≥85 y, and 4% of pts aged 75-84 y received high-dose chemotherapy and autologous stem cell transplant (vs 61% in the <65 y and 37% in the 65-74 y age group). The most common maintenance therapy was RD in pts ≥85 y (although the use was low) and R alone in other age groups (Table). In the ≥85 y group, 27%, 10%, and 4% of pts entered 2L, 3L, and 4L treatments respectively, vs 43%, 23%, and 13% in the <65 y group. Progression-free survival was significantly shorter in the ≥85 y age group vs the 75-84 y age group (P=0.003), 65-74 y age group (P<0.001), and <65 y age group (P<0.001; Fig.1). TTP was significantly shorter in the ≥85 y group vs the <65 y group (P=0.020); however, TTP was similar among the 65-74 y, 75-84 y, and ≥85 y cohorts (Fig. 2). Overall survival was significantly shorter in the ≥85 y group vs the 75-84 y, 65-74 y, and <65 y groups (all P<0.001; Fig. 3). The mortality rate was lowest (46%) during first-line treatment (1L) in pts aged ≥85 y (mainly attributed to MM progression) and increased in 2L and 3L (47% and 54%, respectively); a similar trend was observed in the younger age groups. The main cause of death was MM progression (29% in the ≥85 y vs 16% in the <65 y group). Other notable causes of death in the ≥85 y group included cardiac failure (5% vs 2% in <65 y group) and pneumonia (5% vs 1% in <65 y group). Conclusions: In this analysis, elderly pts received similar types of frontline and maintenance regimens as younger pts, although proportions varied with decreased use of triplet regimens with age. Considering similarities in TTP across the 65-74 y, 75-84 y, and ≥85 y cohorts, these real-world data support active treatment and aggressive supportive care of elderly symptomatic pts, including with novel agents. Additionally, further clinical studies specific to elderly patients with MM should be explored. Disclosures Lee: Amgen: Consultancy, Research Funding; GlaxoSmithKline plc: Research Funding; Sanofi: Consultancy; Daiichi Sankyo: Research Funding; Celgene: Consultancy, Research Funding; Takeda: Consultancy, Research Funding; Janssen: Consultancy, Research Funding. Ailawadhi:Janssen: Consultancy, Research Funding; Takeda: Consultancy; Pharmacyclics: Research Funding; Amgen: Consultancy, Research Funding; Celgene: Consultancy; Cellectar: Research Funding. Gasparetto:Celgene: Consultancy, Honoraria, Other: Travel, accommodations, or other expenses paid or reimbursed ; Janssen: Consultancy, Honoraria, Other: Travel, accommodations, or other expenses paid or reimbursed ; BMS: Consultancy, Honoraria, Other: Travel, accommodations, or other expenses paid or reimbursed . Jagannath:AbbVie: Consultancy; Merck & Co.: Consultancy; Bristol-Myers Squibb: Consultancy; Karyopharm Therapeutics: Consultancy; Celgene Corporation: Consultancy; Janssen Pharmaceuticals: Consultancy. Rifkin:Celgene: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees. Durie:Amgen, Celgene, Johnson & Johnson, and Takeda: Consultancy. Narang:Celgene: Speakers Bureau. Terebelo:Celgene: Honoraria; Jannsen: Speakers Bureau; Newland Medical Asociates: Employment. Toomey:Celgene: Consultancy. Hardin:Celgene: Membership on an entity's Board of Directors or advisory committees. Wagner:Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees; American Cancer Society: Other: Section editor, Cancer journal. Omel:Celgene, Takeda, Janssen: Other: Patient Advisory Committees. Srinivasan:Celgene: Employment, Equity Ownership. Liu:TechData: Consultancy. Dhalla:Celgene: Employment. Agarwal:Celgene Corporation: Employment, Equity Ownership. Abonour:BMS: Consultancy; Celgene: Consultancy, Research Funding; Takeda: Consultancy, Research Funding; Janssen: Consultancy, Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4739-4739
Author(s):  
Pieter Sonneveld ◽  
Maria-Victoria Mateos ◽  
Adrián Alegre ◽  
Thierry Facon ◽  
Cyrille Hulin ◽  
...  

Introduction: For patients with newly diagnosed multiple myeloma (NDMM) who are transplant-eligible, bortezomib/thalidomide/dexamethasone (VTd) is a standard of care (SoC) for induction and consolidation therapy. Clinical practice has evolved to use a modified VTd dose (VTd-mod; 100 mg thalidomide daily), which is reflected in recent treatment guidelines. As VTd-mod has become a real-world SoC, a matching-adjusted indirect comparison (MAIC) of the VTd-mod dose from recent clinical trials versus the dose included in the label (VTd-label; ramp up to 200 mg thalidomide daily) was performed to understand the effect on efficacy of modified VTd dosing for patients with NDMM who are transplant-eligible. Methods: For each outcome (overall survival [OS], progression-free survival [PFS], overall response rates [ORR] post-induction and post-transplant, and rate of peripheral neuropathy), a naïve comparison and a MAIC were performed. Data for VTd-label were obtained from the phase 3 PETHEMA/GEM study (Rosiñol L, et al. Blood. 2012;120[8]:1589-1596). Data for VTd-mod were pooled from the phase 3 CASSIOPEIA study (Moreau P, et al. Lancet. 2019;394[10192]:29-38) and the phase 2 NCT00531453 study (Ludwig H, et al. J Clin Oncol. 2013;31[2]:247-255). Patient-level data for PETHEMA/GEM and CASSIOPEIA were used to generate outcomes of interest and were validated against their respective clinical study reports; aggregate data for NCT00531453 were extracted from the primary publication. Matched baseline characteristics were age, sex, ECOG performance status, myeloma type, International Staging System (ISS) stage, baseline creatinine clearance, hemoglobin level, and platelet count. Results: Patients received VTd-mod (n = 591) or VTd-label (n = 130). After matching, baseline characteristics were similar across groups. For OS, the naïve comparison and the MAIC showed that VTd-mod was non-inferior to VTd-label (MAIC HR, 0.640 [95% CI: 0.363-1.129], P = 0.121; Figure 1A). VTd-mod significantly improved PFS versus VTd-label in the naïve comparison and MAIC (MAIC HR, 0.672 [95% CI: 0.467-0.966], P = 0.031; Figure 1B). Post-induction ORR was non-inferior for VTd-mod versus VTd-label (MAIC odds ratio, 1.781 [95% CI: 1.004-3.16], P = 0.065). Post-transplant, VTd-mod demonstrated superior ORR in both the naïve comparison and MAIC (MAIC odds ratio, 2.661 [95% CI: 1.579-4.484], P = 0.001). For rates of grade 3 or 4 peripheral neuropathy, the naïve comparison and MAIC both demonstrated that VTd-mod was non-inferior to VTd-label (MAIC rate difference, 2.4 [⁻1.7-6.49], P = 0.409). Conclusions: As naïve, indirect comparisons are prone to bias due to patient heterogeneity between studies, a MAIC can provide useful insights for clinicians and reimbursement decision-makers regarding the relative efficacy and safety of different treatments. In this MAIC, non-inferiority of VTd-mod versus VTd-label was demonstrated for OS, post-induction ORR, and peripheral neuropathy. This analysis also showed that VTd-mod significantly improved PFS and ORR post-transplant compared with VTd-label for patients with NDMM who are transplant-eligible. A limitation of this analysis is that unreported or unobserved confounding factors could not be adjusted for. Disclosures Sonneveld: Takeda: Honoraria, Research Funding; SkylineDx: Research Funding; Janssen: Honoraria, Research Funding; Celgene: Honoraria, Research Funding; BMS: Honoraria; Amgen: Honoraria, Research Funding; Karyopharm: Honoraria, Research Funding. Mateos:Janssen, Celgene, Takeda, Amgen, Adaptive: Honoraria; AbbVie Inc, Amgen Inc, Celgene Corporation, Genentech, GlaxoSmithKline, Janssen Biotech Inc, Mundipharma EDO, PharmaMar, Roche Laboratories Inc, Takeda Oncology: Other: Advisory Committee; Janssen, Celgene, Takeda, Amgen, GSK, Abbvie, EDO, Pharmar: Membership on an entity's Board of Directors or advisory committees; Amgen Inc, Celgene Corporation, Janssen Biotech Inc, Takeda Oncology.: Speakers Bureau; Amgen Inc, Janssen Biotech Inc: Other: Data and Monitoring Committee. Alegre:Celgene, Amgen, Janssen, Takeda: Membership on an entity's Board of Directors or advisory committees. Facon:Takeda: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Amgen: Membership on an entity's Board of Directors or advisory committees; Sanofi: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Celgene: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Hulin:celgene: Consultancy, Honoraria; Janssen, AbbVie, Celgene, Amgen: Honoraria. Hashim:Ingress-Health: Employment. Vincken:Janssen: Employment, Equity Ownership. Kampfenkel:Janssen: Employment, Equity Ownership. Cote:Janssen: Employment, Equity Ownership. Moreau:Janssen: Consultancy, Honoraria; Celgene: Consultancy, Honoraria; AbbVie: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; Takeda: Consultancy, Honoraria.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 390-390 ◽  
Author(s):  
Mark A. Schroeder ◽  
H. Jean Khoury ◽  
Madan Jagasia ◽  
Haris Ali ◽  
Gary J. Schiller ◽  
...  

Abstract Background: Corticosteroids are considered standard first-line systemic therapy for patients with aGVHD, but this approach is effective in only approximately half of all cases. For patients who progress or do not respond to corticosteroids, no specific agent has been identified as standard, and regimens are typically selected based on investigator experience and patient co-morbidities. In preclinical models, JAK inhibition has been shown to impair production of cytokines as well as the differentiation and trafficking of T cells implicated in the pathogenesis of aGVHD. Retrospective studies have suggested that JAK1/JAK2 inhibition with ruxolitinib treatment provides clinical benefit in patients with steroid-refractory GVHD (Zeiser et al, Leukemia 2015;29:2062-2068). Herein, we report preliminary safety results from a prospective randomized, parallel-cohort, open-label phase 1 trial evaluating the potent and selective JAK 1 inhibitor INCB039110 in patients with aGVHD. Methods: Male or female patients 18 years or older who underwent their first allo-hematopoietic stem cell transplant (HSCT) from any donor source and developed grades IIB-IVD aGVHD were eligible for the study. Patients were randomized 1:1 to either a 200 or 300 mg oral daily dose of INCB039110 in combination with corticosteroids, and were stratified based on prior treatment status (treatment-naive [TN] versus steroid-refractory [SR]). The primary endpoint of the study was safety and tolerability; secondary endpoints included overall response rate at Days 14, 28, 56, and 100, non-relapse mortality, and pharmacokinetic (PK) evaluations. Patients were assessed through Day 28 for dose-limiting toxicities (DLTs) and response. A Bayesian approach was used for continuous monitoring of DLTs from Days 1-28. Treatment continued until GVHD progression, unacceptable toxicity, or withdrawal from the study. Acute GVHD was graded according to MN-CIBMTR criteria; adverse events (AEs) were graded according to NCICTCAE v 4.03. Results: Between January and June 2016, 31 patients (TN, n=14; SR, n= 17) were randomized. As of July 25, 2016, data were available from 30 patients who received an oral daily dose of 200 mg (n=14) or 300 mg (n=16) INCB039110 in combination with 2 mg/kg methylprednisolone (or equivalent dose of prednisone). The median durations of treatment were 60.8 days and 56.5 days for patients receiving a daily dose of 200 mg and 300 mg INCB039110, respectively. One DLT of Grade 3 thrombocytopenia was reported. The most frequently reported AEs included thrombocytopenia/platelet count decrease (26.7%), diarrhea (23.3%), peripheral edema (20%), fatigue (16.7%), and hyperglycemia (16.7%). Grade 3 or 4 AEs occurred in 77% of patients and with similar frequency across dose groups and included cytomegalovirus infections (n=3), gastrointestinal hemorrhage (n=3), and sepsis (n=3). Five patients had AEs leading to a fatal outcome, including multi-organ failure (n=2), sepsis (n=1), disease progression (n=1), and bibasilar atelectasis, cardiopulmonary arrest, and respiratory distress (n=1); none of the fatal events was attributed to INCB039110. Efficacy and PK evaluations are ongoing and will be updated at the time of presentation. Conclusion: The oral, selective JAK1 inhibitor INCB039110 can be given safely to steroid-naive or steroid-refractory aGVHD patients. The safety profile was generally consistent in both dose groups. Biomarker evaluation, PK, and cellular phenotyping studies are ongoing. The recommended phase 2 dose will be selected and reported based on PK studies and final safety data. Disclosures Schroeder: Incyte Corporation: Honoraria, Research Funding. Khoury:Incyte Corporation: Membership on an entity's Board of Directors or advisory committees, Research Funding. Jagasia:Incyte Corporation: Research Funding; Therakos: Research Funding; Janssen: Research Funding. Ali:Incyte Corporation: Research Funding. Schiller:Incyte Corporation: Research Funding. Arbushites:Incyte Corporation: Employment, Equity Ownership. Delaite:Incyte Corporation: Employment, Equity Ownership. Yan:Incyte Corporation: Employment, Equity Ownership. Rhein:Incyte Corporation: Employment, Equity Ownership. Perales:Merck: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Seattle Genetics: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Incyte Corporation: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Chen:Incyte Corporation: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Research Funding. DiPersio:Incyte Corporation: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 266-266
Author(s):  
Sagar Patel ◽  
Saulius K. Girnius ◽  
Binod Dhakal ◽  
Lohith Gowda ◽  
Raphael Fraser ◽  
...  

Background Primary plasma cell leukemia (pPCL) is a rare plasma cell neoplasm with a high mortality rate. There have been improvements in multiple myeloma (MM) outcomes with novel induction agents and use of hematopoietic cell transplantation (HCT) with maintenance, but similar progress has not been reported for pPCL. We examined the outcomes of pPCL patients receiving novel agents with autologous (autoHCT) or allogeneic (alloHCT) approaches as reported to the Center for International Blood and Marrow Transplant Research (CIBMTR) in the modern era. Methods From 2008 to 2015, 348 pPCL pts underwent HCT (N = 277 - autoHCT and 71 - alloHCT) with 45% and 48% having research level data available, respectively. Cumulative incidences of non-relapse mortality (NRM) and relapse/progression (REL), and probability of progression-free survival (PFS) and overall survival (OS) were calculated. Cox multivariate regression was used to model survival after autoHCT only. Median follow-up in autoHCT and alloHCT was 48 and 60 months, respectively. Results AutoHCT Cohort Median age was 60 years and 93% received HCT within 12 months of diagnosis with 76% after a single line of induction (Table 1). 35% had high risk cytogenetics. 23% received bortezomib, doxorubicin, cisplatin, cyclophosphamide, and etoposide (VDPACE). Moreover, 40% received bortezomib (BTZ) and immunomodulatory drug (IMIID)-based triplets. Disease status at HCT was VGPR or better in 47%. 27% received maintenance therapy. At 4 years post-HCT, NRM was 7% (4-11%), REL 76% (69-82%), PFS 17% (13-23%), and OS 28% (22-35%) (Figures 1A, 2A, 2B). Disease status ≥VGPR at HCT and Karnofsky Performance Score &gt;90 significantly predicted superior OS in multivariate analysis. AlloHCT Cohort Median age was 53 years and 89% received HCT within 12 months of diagnosis (Table 1). 61% received a single alloHCT, while 39% used auto-alloHCT tandem approach. 42% had high-risk cytogenetics. 61% received total body irradiation with 44% receiving myeloablative conditioning. Use of VDPACE was higher at 41% in this cohort. VGPR status at HCT was similar (48%), while maintenance was used less often (12%). Grade II-IV acute GVHD occurred in 30% and chronic GVHD in 45%. At four years post-HCT, NRM was 12% (5-21%), REL 69% (56-81%), PFS 19% (10-31%), and OS 31% (19-44%) (Figures 1A, 1B, 2A, 2B). There were no differences in outcomes based on type of HCT. A comparison of post-HCT outcomes of CIBMTR pPCL patients from 1995 to 2006 showed that PFS and OS outcomes are inferior despite lower NRM in this modern cohort (Mahindra et al. Leukemia. 2012). In addition, analysis of SEER (1995-2009) and CIBMTR databases showed that use of HCT increased from 12% (7-21%) in 1995 to 46% (34-64%) in 2009. Conclusion More newly diagnosed pPCL patients are receiving modern induction regimens translating into a higher proportion receiving HCT, but without significant further benefit post-HCT. Post-HCT relapse remains the biggest challenge and further survival in pPCL will likely need a combination of targeted and cell therapy approaches. This study provides a benchmark for future HCT studies for pPCL. Disclosures Girnius: Takeda: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Genentech: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Dhakal:Takeda: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Sanofi: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Honoraria. Shah:University of California, San Francisco: Employment; Indapta Therapeutics: Equity Ownership; Genentech, Seattle Genetics, Oncopeptides, Karoypharm, Surface Oncology, Precision biosciences GSK, Nektar, Amgen, Indapta Therapeutics, Sanofi: Membership on an entity's Board of Directors or advisory committees; Celgene, Janssen, Bluebird Bio, Sutro Biopharma: Research Funding; Poseida: Research Funding; Bristol-Myers Squibb: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Nkarta: Consultancy, Membership on an entity's Board of Directors or advisory committees; Kite: Consultancy, Membership on an entity's Board of Directors or advisory committees; Teneobio: Consultancy, Membership on an entity's Board of Directors or advisory committees. Qazilbash:Amgen: Consultancy, Other: Advisory Board; Bioclinical: Consultancy; Autolus: Consultancy; Genzyme: Other: Speaker. Kumar:Celgene: Consultancy, Research Funding; Takeda: Research Funding; Janssen: Consultancy, Research Funding. D'Souza:EDO-Mundapharma, Merck, Prothena, Sanofi, TeneoBio: Research Funding; Prothena: Consultancy; Pfizer, Imbrium, Akcea: Membership on an entity's Board of Directors or advisory committees. Hari:BMS: Consultancy, Research Funding; Takeda: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding; Janssen: Consultancy, Honoraria; Kite: Consultancy, Honoraria; Amgen: Research Funding; Spectrum: Consultancy, Research Funding; Sanofi: Honoraria, Research Funding; Cell Vault: Equity Ownership; AbbVie: Consultancy, Honoraria.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 886-886
Author(s):  
Partow Kebriaei ◽  
Matthias Stelljes ◽  
Daniel J. DeAngelo ◽  
Nicola Goekbuget ◽  
Hagop M. Kantarjian ◽  
...  

Abstract Introduction: Attaining complete remission (CR) prior to HSCT is associated with better outcomes post-HSCT. Inotuzumab ozogamicin (INO), an anti-CD22 antibody conjugated to calicheamicin, has shown significantly higher remission rates (CR/CRi and MRD negativity) compared with standard chemotherapy (SC) in patients (pts) with R/R ALL (Kantarjian et al. N Engl J Med. 2016). Pts treated with INO were more likely to proceed to HSCT than SC, which allowed for a higher 2-yr probability of overall survival (OS) than patients receiving SC (39% vs 29%). We investigated the role of prior transplant and proceeding directly to HSCT after attaining remission from INO administration as potential factors in determining post-HSCT survival to inform when best to use INO in R/R ALL patients. Methods: The analysis population consisted of R/R ALL pts who were enrolled and treated with INO and proceeded to allogeneic HSCT as part of two clinical trials: Study 1010 is a Phase 1/2 trial (NCT01363297), while Study 1022 is the pivotal randomized Phase 3 (NCT01564784) trial. Full details of methods for both studies have been previously published (DeAngelo et al. Blood Adv. 2017). All reference to OS pertains to post-HSCT survival defined as time from HSCT to death from any cause. Results: As of March 2016, out of 236 pts administered INO in the two studies (Study 1010, n=72; Study 1022, n=164), 101 (43%) proceeded to allogeneic HSCT and were included in this analysis. Median age was 37 y (range 20-71) with 55% males. The majority of pts received INO as first salvage treatment (62%) and 85% had no prior SCT. Most pts received matched HSCTs (related = 25%; unrelated = 45%) with peripheral blood as the predominant cell source (62%). The conditioning regimens were mainly myeloablative regimens (60%) and predominantly TBI-based (62%). Dual alkylators were used in 13% of pts, while thiotepa was used in 8%. The Figure shows post-transplant survival in the different INO populations: The median OS post-HSCT for all pts (n=101) who received INO and proceeded to HSCT was 9.2 mos with a 2-yr survival probability of 41% (95% confidence interval [CI] 31-51%). In patients with first HSCT (n=86) the median OS post-HSCT was 11.8 mos with a 2-yr survival probability of 46% (95% CI 35-56%). Of note, some patients lost CR while waiting for HSCT and had to receive additional treatments before proceeding to HSCT (n=28). Those pts who went directly to first HSCT after attaining remission with no intervening additional treatment (n=73) fared best, with median OS post-HSCT not reached with a 2-yr survival probability of 51% (95% CI 39-62%). In the latter group, 59/73 (80%) attained MRD negativity, and 49/73 (67%) were in first salvage therapy. Of note, the post-HSCT 100-day survival probability was similar among the 3 groups, as shown in the Table. Multivariate analyses using Cox regression modelling confirmed that MRD negativity during INO treatment and no prior HSCT were associated with lower risk of mortality post-HSCT. Other prognostic factors associated with worse OS included older age, higher baseline LDH, higher last bilirubin measurement prior to HSCT, and use of thiotepa. Veno-occlusive disease post-transplant was noted in 19 of the 101 pts who received INO. Conclusion: Administration of INO in R/R ALL pts followed with allogeneic HSCT provided the best long-term survival benefit among those who went directly to HSCT after attaining remission and had no prior HSCT. Disclosures DeAngelo: Glycomimetics: Research Funding; Incyte: Consultancy, Honoraria; Blueprint Medicines: Honoraria, Research Funding; Takeda Pharmaceuticals U.S.A., Inc.: Honoraria; Shire: Honoraria; Pfizer Inc.: Consultancy, Honoraria, Research Funding; Novartis Pharmaceuticals Corporation: Consultancy, Honoraria, Research Funding; BMS: Consultancy; ARIAD: Consultancy, Research Funding; Immunogen: Honoraria, Research Funding; Celgene: Research Funding; Amgen: Consultancy, Research Funding. Kantarjian: Novartis: Research Funding; Amgen: Research Funding; Delta-Fly Pharma: Research Funding; Bristol-Meyers Squibb: Research Funding; Pfizer: Research Funding; ARIAD: Research Funding. Advani: Takeda/ Millenium: Research Funding; Pfizer: Consultancy. Merchant: Pfizer: Consultancy, Research Funding. Stock: Amgen: Consultancy; Pfizer: Consultancy, Membership on an entity's Board of Directors or advisory committees; Seattle Genetics: Consultancy, Membership on an entity's Board of Directors or advisory committees. Wang: Pfizer: Employment, Equity Ownership. Zhang: Pfizer: Employment, Equity Ownership. Loberiza: Pfizer: Employment, Equity Ownership. Vandendries: Pfizer: Employment, Equity Ownership. Marks: Pfizer: Consultancy, Honoraria, Speakers Bureau; Amgen: Consultancy, Honoraria, Speakers Bureau.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 523-523
Author(s):  
Rasoul Pourebrahimabadi ◽  
Zoe Alaniz ◽  
Lauren B Ostermann ◽  
Hung Alex Luong ◽  
Rafael Heinz Montoya ◽  
...  

Acute myeloid leukemia (AML) is a heterogeneous disease that develops within a complex microenvironment. Reciprocal interactions between the bone marrow mesenchymal stem/stromal cells (BM-MSCs) and AML cells can promote AML progression and resistance to chemotherapy (Jacamo et al., 2014). We have recently reported that BM-MSCs derived from AML patients (n=103) highly express p53 and p21 compared to their normal counterparts (n=73 p&lt;0.0001) (Hematologica, 2018). To assess the function of p53 in BM-MSCs, we generated traceable lineage specific mouse models targeting Mdm2 or Trp53 alleles in MSCs (Osx-Cre;mTmG;p53fl/fl and Osx-Cre;mTmG;Mdm2fl/+) or hematopoietic cells (Vav-Cre;mTmG;p53fl/fl and Vav-Cre;mTmG;Mdm2fl/+). Homozygote deletion of Mdm2 (Osx-Cre;Mdm2fl/fl) resulted in death at birth and displayed skeletal defects as well as lack of intramedullary hematopoiesis. Heterozygote deletion of Mdm2 in MSCs was dispensable for normal hematopoiesis in adult mice, however, resulted in bone marrow failure and thrombocytopenia after irradiation. Homozygote deletion of Mdm2 in hematopoietic cells (Vav-Cre;Mdm2fl/fl) was embryonically lethal but the heterozygotes were radiosensitive. We next sought to examine if p53 levels in BM-MSCs change after cellular stress imposed by AML. We generated a traceable syngeneic AML model using AML-ETO leukemia cells transplanted into Osx-Cre;mTmG mice. We found that p53 was highly induced in BM-MSCs of AML mice, further confirming our findings in primary patient samples. The population of BM-MSCs was significantly increased in bone marrow Osx-Cre;mTmG transplanted with syngeneic AML cells. Tunnel staining of bone marrow samples in this traceable syngeneic AML model showed a block in apoptosis of BM-MSCs suggesting that the expansion of BM-MSCs in AML is partly due to inhibition of apoptosis. As the leukemia progressed the number of Td-Tomato positive cells which represents hematopoietic lineage and endothelial cells were significantly decreased indicating failure of normal hematopoiesis induced by leukemia. SA-β-gal activity was significantly induced in osteoblasts derived from leukemia mice in comparison to normal mice further supporting our observation in human leukemia samples that AML induces senescence of BM-MSCs. To examine the effect of p53 on the senescence associated secretory profile (SASP) of BM-MSCs, we measured fifteen SASP cytokines by qPCR and found significant decrease in Ccl4, Cxcl12, S100a8, Il6 and Il1b upon p53 deletion in BM-MSCs (Osx-Cre;mTmG;p53fl/fl) compared to p53 wildtype mice. To functionally evaluate the effects of p53 in BM-MSCs on AML, we deleted p53 in BM-MSCs (Osx-Cre;mTmG;p53fl/fl) and transplanted them with syngeneic AML-ETO-Turquoise AML cells. Deletion of p53 in BM-MSCs strongly inhibited the expansion of BM-MSCs in AML and resulted in osteoblast differentiation. This suggests that expansion of BM-MSCs in AML is dependent on p53 and that deletion of p53 results in osteoblast differentiation of BM-MSCs. Importantly, deletion of p53 in BM-MSCs significantly increased the survival of AML mice. We further evaluated the effect of a Mdm2 inhibitor, DS-5272, on BM-MSCs in our traceable mouse models. DS-5272 treatment of Osx-cre;Mdm2fl/+ mice resulted in complete loss of normal hematopoietic cells indicating a non-cell autonomous regulation of apoptosis of hematopoietic cells mediated by p53 in BM-MSCs. Loss of p53 in BM-MSCs (Osx-Cre;p53fl/fl) completely rescued hematopoietic failure following Mdm2 inhibitor treatment. In conclusion, we identified p53 activation as a novel mechanism by which BM-MSCs regulate proliferation and apoptosis of hematopoietic cells. This knowledge highlights a new mechanism of hematopoietic failure after AML therapy and informs new therapeutic strategies to eliminate AML. Disclosures Khoury: Angle: Research Funding; Stemline Therapeutics: Research Funding; Kiromic: Research Funding. Bueso-Ramos:Incyte: Consultancy. Andreeff:BiolineRx: Membership on an entity's Board of Directors or advisory committees; CLL Foundation: Membership on an entity's Board of Directors or advisory committees; NCI-RDCRN (Rare Disease Cliln Network): Membership on an entity's Board of Directors or advisory committees; Leukemia Lymphoma Society: Membership on an entity's Board of Directors or advisory committees; German Research Council: Membership on an entity's Board of Directors or advisory committees; NCI-CTEP: Membership on an entity's Board of Directors or advisory committees; Cancer UK: Membership on an entity's Board of Directors or advisory committees; Center for Drug Research & Development: Membership on an entity's Board of Directors or advisory committees; NIH/NCI: Research Funding; CPRIT: Research Funding; Breast Cancer Research Foundation: Research Funding; Oncolyze: Equity Ownership; Oncoceutics: Equity Ownership; Senti Bio: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Eutropics: Equity Ownership; Aptose: Equity Ownership; Reata: Equity Ownership; 6 Dimensions Capital: Consultancy; AstaZeneca: Consultancy; Amgen: Consultancy; Daiichi Sankyo, Inc.: Consultancy, Patents & Royalties: Patents licensed, royalty bearing, Research Funding; Jazz Pharmaceuticals: Consultancy; Celgene: Consultancy. OffLabel Disclosure: Mdm2 inhibitor-DS 5272


Sign in / Sign up

Export Citation Format

Share Document