scholarly journals Outcomes Following Allogeneic Stem Cell Transplantation for AML in First Completion Remission Are Comparable between MRD Negative Patients and MRD Positive Patients Receiving Induction Only and Are Superior to MRD Positive Patients Receiving Induction and Additional Therapy

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4615-4615
Author(s):  
Jonathan A Gutman ◽  
Prashant Sharma ◽  
Enkhtsetseg Purev ◽  
Clayton Smith ◽  
Amanda Winters ◽  
...  

Background: Data suggests that the presence of measurable residual disease (MRD) at the time of transplant for AML portends a poor prognosis. The timing of MRD assessment and transplant relative to the amount of pre-transplant therapy, however, may affect this prognosis. To examine further the question of optimal timing of transplant in the setting of MRD, we reviewed outcomes in AML patients treated with traditional cytotoxic induction at our center who achieved CR1 and proceeded to transplant. Methods: We analyzed outcomes in patients undergoing first transplant for AML in CR1 between January 2014 and March 2018. CR was defined according to 2017 European Leukemia Network (ELN) guidelines. Non-core binding factor patients were included if they underwent initial therapy with 7+3 chemotherapy (+/- adjunctive inhibitor during induction or as post-transplant maintenance). MRD testing modalities included cytogenetics/FISH (performed in 37 patients, positive in 10), flow cytometry performed by Hematologics Inc (performed in 49 patients, positive in 16), and/or mutation specific droplet digital PCR (ddPCR) performed at our center (performed in 33 patients, positive in 16). For three patients, other molecular methods demonstrated MRD. We compared outcomes in three groups: patients who underwent transplant in CR1 with positive MRD after induction only (MRD positive induction only) (n=15), patients who underwent transplant in CR1 with positive MRD after induction and additional therapy (MRD positive induction plus) (n=19), and patients undergoing transplant in CR1 with no MRD (MRD negative) (n=37). Patient details are summarized in Table 1. Results: CI of relapse was higher among MRD positive induction plus patients than MRD positive induction only patients (p=0.042, HR 0.301 (0.094-0.96)) and comparable among MRD positive induction only patients and MRD negative patients (p=0.987, HR 1.011 (0.29-3.58)). CI of transplant related mortality (TRM) was comparable between MRD positive induction plus patients and MRD positive induction only patients (p=0.165, HR 0.23 (95% CI 0.028-1.81)) and comparable among MRD positive induction only patients and MRD negative patients (p=0.871, HR 1.22 (95% CI 0.12-12.87)). Relapse free survival (RFS) and overall survival (OS) were comparable between MRD positive induction only patients and MRD negative patients and significantly better than for MRD positive induction plus patients (RFS (p<0.0001) and OS (p=0.0008)). (Figure 1) On multivariate analysis including MRD positive induction only, MRD positive induction plus, MRD negative, patient age, Sorror comorbidity index, donor source, conditioning regimen, use of adjunctive therapy, and ELN AML risk status, MRD positive induction plus was associated with a significantly higher risk of relapse than MRD positive induction only (p=0.014, HR 0.231 (95% CI 0.072-0.742)). No other factors were statistically significant. Because multiple strategies were used to assess for MRD, we compared MRD positive induction only to MRD positive induction plus patients using flow cytometry performed by Hematologics Inc as the only MRD assessment technique. CI of relapse trended toward lower in the MRD positive induction only group (p=0.10, HR 0.22, (95% CI 0.036-1.34). OS and RFS were significantly improved in the MRD positive induction only patients (p=0.027 and p=0.026 respectively). Conclusions: For patients achieving CR following induction and moving directly to transplant in spite of MRD positivity, outcomes were comparable to patients going to transplant in an MRD negative state and were significantly improved compared to outcomes of patients in an MRD positive state who received additional therapy following induction. Our series is small, and multiple MRD monitoring strategies were used. However, given the paucity of data on this specific question, uncertainty about whether MRD will clear with additional cytotoxic therapy following induction, and the poor prognosis of patients with persistent MRD in the induction plus group, we consider transplant following induction reasonable in this population regardless of MRD status. Larger series are necessary to more definitively answer this question. Disclosures Loken: Hematologics, Inc: Employment, Equity Ownership. Pollyea:Janssen: Consultancy, Membership on an entity's Board of Directors or advisory committees; Abbvie: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Gilead: Consultancy, Membership on an entity's Board of Directors or advisory committees; Pfizer: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Agios: Consultancy, Membership on an entity's Board of Directors or advisory committees; Astellas: Consultancy, Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees; Celyad: Consultancy, Membership on an entity's Board of Directors or advisory committees; Diachii Sankyo: Consultancy, Membership on an entity's Board of Directors or advisory committees; Forty-Seven: Consultancy, Membership on an entity's Board of Directors or advisory committees; Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4621-4621
Author(s):  
Onyee Chan ◽  
Chetasi Talati ◽  
Hannah Asghari ◽  
Nelli Bejanyan ◽  
Hany Elmariah ◽  
...  

Background: In recent years, genomic studies have uncovered a number of driver gene mutations in acute myeloid leukemia (AML). There is great interest in leveraging residual disease detection methods including next-generation sequencing (NGS) to predict outcomes, especially in the setting of allogeneic hematopoietic cell transplantation (HCT). One study showed measurable minimal residual disease (MRD) at the time of HCT increases the risk of relapse in patients who received a reduced-intensity conditioning (RIC) regimen (Hourigan et al. 2019). In this study, we evaluate the prognostic impact of somatic mutation clearance using NGS prior to HCT in patients with AML. Methods: We identified a total of 139 patients with AML who underwent HCT at the Moffitt Cancer Center (2013-2018). Using European LeukemiaNet (ELN) criteria, patients were included if at the time of HCT they were adverse risk in complete remission (CR)1, intermediate risk in CR1, favorable risk in CR1 if indication for transplant present, or favorable risk in CR2 with at least one time point when NGS was performed before and after HCT. We utilized clinical data captured by BMT Research and Analysis Information Network (BRAIN). Molecular testing via NGS included 54-gene TruSight Myeloid panel tested on Illumina sequencers with a lower limit of detection of 5%. Positive persistent detectable disease (PDD) was defined as presence of detectable mutations on NGS at HCT. Univariate and multivariate analyses were conducted using log-rank and Cox regression, respectively. Kaplan-Meier analysis was used to estimate overall survival (OS) and relapse free survival (RFS) from the time of diagnosis. Cumulative incidence of relapse (CIR) and non-relapse mortality (NRM) were calculated by the Fine and Gray model. Results: Of the 139 patients (74 males/65 females), 59% were PDD positive at HCT and 41% PDD negative at HCT. Median age at HCT was 59 years. More patients were in ELN-defined adverse risk (46.8%) in comparison to intermediate risk (35.3%) or favorable risk (18%). In both cohorts, majority of the patients had 1 line of therapy prior to HCT. Overall, 57.6% of patients received myeloablative conditioning regimen (MAC) with the remaining receiving RIC. More patients received MAC in both PDD positive at HCT and PPD negative at HCT groups (Table 1). There were 35 patients (25.2%) who relapsed after HCT, and 17 had NGS available at diagnosis, at the time of HCT, and at relapse. The mutation frequencies and changes over time are shown in Figure 1. Univariate analysis showed inferior OS in patients who are PDD positive at HCT compared to PDD negative at HCT (HR 1.98, 95% CI 1.06-3.72, p=0.032). After adjusting for ELN risk and PDD status, the patients who received more than 1 line of therapy prior to HCT had significantly worse OS (p=0.005). Patients with negative PDD at HCT had a significantly better OS at 2-year compared to PDD positive at HCT patients, 78.7% vs. 62.4% (p=0.029) with a median follow up of 29.9 months (Figure 2A). The RFS at 2-year were 72.6% for PDD negative at HCT patients and 51.8% for PDD positive at HCT patients (p=0.090). There was no difference in NRM or CIR between these two groups (p=0.605 and p=0.136, respectively). Further subgroup analysis did not find a significant difference between PDD status and different types of conditioning regimen (Figure 2B). Conclusions: In this study, we report that clearance of somatic gene mutations in AML patients prior to HCT confers better outcomes compared to those with measurable PDD at HCT. There is a survival advantage in patients who received fewer lines of treatment prior to HCT. Larger cohort and greater depth of NGS coverage is needed to better clarify the impact of conditioning regimen in this population. Disclosures Talati: Jazz Pharmaceuticals: Honoraria, Speakers Bureau; Daiichi-Sankyo: Honoraria; Astellas: Honoraria, Speakers Bureau; Pfizer: Honoraria; Celgene: Honoraria; Agios: Honoraria. Bejanyan:Kiadis Pharma: Other: advisory board. Komrokji:JAZZ: Consultancy; Agios: Consultancy; Incyte: Consultancy; DSI: Consultancy; pfizer: Consultancy; celgene: Consultancy; Novartis: Speakers Bureau; JAZZ: Speakers Bureau. Kuykendall:Janssen: Consultancy; Incyte: Honoraria, Speakers Bureau; Abbvie: Honoraria; Celgene: Honoraria. Lancet:Daiichi Sankyo: Consultancy, Other: fees for non-CME/CE services ; Agios, Biopath, Biosight, Boehringer Inglheim, Celator, Celgene, Janssen, Jazz Pharmaceuticals, Karyopharm, Novartis: Consultancy; Pfizer: Consultancy, Research Funding. List:Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding. Nishihori:Novartis: Research Funding; Karyopharm: Research Funding. Sallman:Abbvie: Speakers Bureau; Novartis: Speakers Bureau; Jazz: Research Funding; Incyte: Speakers Bureau; Celyad: Membership on an entity's Board of Directors or advisory committees; Celgene: Research Funding, Speakers Bureau. Sweet:Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Celgene: Speakers Bureau; Pfizer: Consultancy; Incyte: Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Agios: Membership on an entity's Board of Directors or advisory committees; Abbvie: Membership on an entity's Board of Directors or advisory committees; Astellas: Membership on an entity's Board of Directors or advisory committees; Stemline: Consultancy; Jazz: Speakers Bureau.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2274-2274 ◽  
Author(s):  
Nischala Ammannagari ◽  
Paul K. Wallace ◽  
Theresa Hahn ◽  
Yali Zhang ◽  
Christine M. Ho ◽  
...  

Abstract Minimal residual disease (MRD) after autologous hematopoietic cell transplant (AHCT) in multiple myeloma (MM) has been shown to be an important predictor of clinical outcomes, suggesting that MRD negativity may be a new goal of therapy. Multiparametric flow cytometry (MFC) is a commonly used method for MRD assessment, however this technique is still evolving and efforts are underway to standardize this testing. The key factors which enable detection of residual malignant plasma cells by MFC remain an area of active investigation. We performed a retrospective review of 172 consecutive MM patients who received AHCT between 10/1/2007 and 5/31/2015 at our institution and had undergone MRD assessment by MFC at day +100 post-AHCT. Day +100 post-AHCT response was determined using the International Myeloma Working Group (IMWG) Uniform Response Criteria (URC) and was correlated with MRD assessment as well as progression free survival (PFS) and overall survival (OS). Data were collected on the specific MFC panel utilized, including the epitopes analyzed and the total plasma cell number (PCN) counted (normal and malignant PC). These variables were correlated with clinical outcomes including day +100 MM response, PFS and OS. Of 172 patients, 30 were MRD-positive, 133 MRD-negative, and 9 were equivocal at day +100 post-AHCT, the latter of which were excluded from further analyses. Day+100 MRD-negative status by MM response was: 31/37(84%) for VGPR, 35/41 (85%) for CR, and 42/42 (100%) for sCR. Patients who achieved a CR or sCR had improved PFS and OS rates compared with patients who achieved ≤VGPR: 3-year PFS: 61% (95% CI 49-74%) vs 46% (95% CI 32-59%), P=0.03; 3-year OS: 96% (95% CI 91-100%) vs 69% (95% CI 56-81%), P=0.005)). Patients with MRD-negative disease at day +100 post-AHCT had significantly superior PFS and OS compared to those with MRD-positive disease: 3-yr PFS 62% (95% CI 52-72%) vs 33% (95% CI 12-53%), P <0.0001) (Figure 1); 3-year OS 85% (95% CI 78-93%) vs 64% (95% CI 44-85%), P=0.004). There was no association between MRD status and age (<60 vs ≥60 years), sex, race (white vs other), performance status (KPS ≤80 vs ≥90), or subsequent transplant (P>0.1). The details of the four different MRD MFC panels are shown in Table 1. Panels C and D were compared, at a similar PCN level, but different epitopes tested, and found no significant difference in PFS or OS. Further analysis of PCN within the MRD-negative cohort revealed a trend towards improved 3-yr PFS rates with increasing numbers of PCN analyzed: 42% (95% CI 20-63%) for PCN<250,000, 68% (95% CI 52-83%) for PCN=250,000-500,000, 59% (95% CI 42-76%) for PCN >500,000-1,000,000 and 89% (78-100%) for PCN>1,000,000 (P=0.099) (Figure 2). The 3-yr OS rates for MRD-negative patients were higher for increasing PCNs analyzed, but the PCN categories were not statistically significantly different: 74% (95% CI 54-94%) for PCN<250,000, 88% (95% CI 77-99%) for PCN=250,000-500,000, 85% (95% CI 73-98%) for PCN >500,000-1,000,000 and 100% for PCN>1,000,000 (P=0.2). Sensitivity analysis revealed similar trends when a cut-off of above or below 500,000 or 1,000,000 was used. Our results confirm that achievement of MFC MRD negativity at day +100 post-AHCT is associated with improved PFS and OS. Factors such as the long-half lives of immunoglobulins, the quality of the bone marrow aspirate obtained, and the presence of occult extramedullary disease may account for the patients who were MRD negative but did not achieve a CR at day +100 post AHCT by IMWG URC. MRD assessment by MFC at our institution has evolved over time to include higher numbers of acquired and analyzed events. Notably, there was a trend towards improved outcomes with greater numbers of plasma cells analyzed, suggesting that continued development of MRD assessment by MFC should focus on increasing PCN analyzed in order to improve detection of residual MM clones. Disclosures Hahn: Novartis: Equity Ownership; NIH: Research Funding. McCarthy:The Binding Site: Honoraria, Membership on an entity's Board of Directors or advisory committees; Sanofi: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees; Onyx: Honoraria, Membership on an entity's Board of Directors or advisory committees; Karyopharm: Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Gamida Cell: Honoraria, Membership on an entity's Board of Directors or advisory committees. Holstein:Millennium: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2753-2753
Author(s):  
Veit Bücklein ◽  
Thomas Köhnke ◽  
Frauke Schnorfeil ◽  
Klaus H. Metzeler ◽  
Nikola P Konstandin ◽  
...  

Abstract The prognosis of patients with AML is determined by a multitude of recurrent genetic alterations, and treatment algorithms heavily rely on risk stratification by genetic characterization of the disease at the time of diagnosis. However, this a priori risk stratification does not integrate information on treatment susceptibility of the individual patient. Assessment of Minimal Residual Disease (MRD) aims to implement this information in the patient-specific treatment management. AML cells with aberrant phenotypes can be detected at sensitivities below 1:104 by flow cytometry in the majority of patients. Therefore, flow cytometry MRD assessment (flow MRD) enables determination of MRD status in patients without suitable molecular markers (e.g. NPM1, CBFß-MYH11, and RUNX1-RUNX1T1). Here, we validate the role of flow MRD in AML patients receiving intensive chemotherapy with and without available molecular markers. Flow MRD was analyzed in patients with AML (excluding APL) diagnosed between 2012 and 2017 receiving intensive induction chemotherapy (sHAM or 7+3). Flow MRD analysis was performed during aplasia (on day 16 after treatment initiation) as well as post induction. Presence of ≥0.1% Leukemia-associated immunophenotype (LAIP)-positive cells was defined as flow MRD positivity. Molecular MRD was analyzed post induction for NPM1 and CBF, and post consolidation for RUNX1-RUNX1T1. Kaplan-Meier estimators and log-rank tests were used to analyze survival data. Cox's proportional hazards regression model was used to determine the influence of individual factors in multivariate analyses. A total of 161 patients were included. In 5 cases (3.1% of all cases), no LAIP could be identified, and these patients were excluded from further analyses. Flow MRD assessment during aplasia was available in 145 cases. 122 patients had flow MRD assessments available post induction. 114 patients achieving CR or CRi after induction therapy had flow MRD assessments available at both time points. Flow MRD positivity during aplasia was associated with shorter event free survival (EFS, 6.1 months vs. 19.1 months, p<0.001). Similarly, flow MRD positivity post induction was associated with shorter EFS (11.9 months vs. median not reached, p=0.007). For both timepoints, flow MRD was an independent risk factor in multivariate analysis compared to known risk factors such as age, genetic/molecular risk profile as determined by the ELN2017 risk categories as well as early blast clearance by morphology. Persistent flow MRD positivity at both timepoints (combined flow MRD) identified patients with particularly short EFS (8.2 months), whereas patients with flow MRD negativity at both time points had the best outcome in our cohort (median not reached, p=0.002). Combined flow MRD status was an independent predictor of EFS and RFS (HR 1.9 and 1.8, p=0.001 and p=0.007, respectively), whereas blast clearance by morphology had no significant prognostic impact (p>0.05 for all endpoints). 64/161 patients (39%) had molecular MRD assessment available for analysis. In these patients, molecular MRD positivity predicted a significantly shorter EFS (9.3 months vs. median not reached, p=0.01). Indeed, molecular MRD positivity was an independent risk factor for adverse EFS and RFS (HR 1.7 and 1.6, p=0.008 and p=0.018, respectively). In this subgroup, flow MRD was not an independent prognostic factor. However, for patients without available molecular MRD marker (97/161 patients), flow MRD positivity at aplasia (p=0.004), post induction (p=0.015) or as combined status (p=0.004) was associated with a significantly shorter EFS and remained an independent risk factor in multivariate analysis (HR 2.5 and 2.6, p=0.016 and p=0.012 for EFS and RFS, respectively). Taken together, we demonstrate that both flow MRD as well as molecular MRD strongly correlate with survival. While molecular MRD assessment was only available in 39% of patients, MRD assessment by flow cytometry was feasible in >95% of AML patients. Flow MRD positivity both during aplasia and post induction was an independent risk factor, confirming the superiority of flow MRD compared to early morphologic response assessment. In conclusion, molecular and flow cytometric MRD assessment are complementing methods for the estimation of treatment response, and will be integrated in clinical trials to validate their significance for patient-specific treatment management. Disclosures Metzeler: Celgene: Consultancy, Research Funding; Novartis: Consultancy. Hiddemann:F. Hoffman-La Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bayer: Consultancy, Research Funding; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Subklewe:Gilead Sciences: Membership on an entity's Board of Directors or advisory committees, Research Funding; Pfizer: Membership on an entity's Board of Directors or advisory committees; Roche AG: Research Funding; AMGEN: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4666-4666
Author(s):  
Richard Leblanc ◽  
Imran Ahmad ◽  
Rafik Terra ◽  
Séverine Landais ◽  
Céline Nkoue ◽  
...  

Abstract Introduction: Multiple myeloma (MM) remains incurable with standard therapies. Allogeneic stem cell transplantation (alloSCT) is the only curative treatment for these patients. We hypothesized that bortezomib (BTZ) consolidation after tandem autologous stem cell transplantation (ASCT) and nonmyeloablative (NMA) alloSCT could improve quality of response while decreasing relapse and cGVHD. We also sought to determine prospectively the predictive value of bone marrow minimal residual disease (MRD) evaluation using a highly sensitive flow cytometry assay. Methods: Newly diagnosed myeloma (NDMM) patients ≤65 years with high-risk (HR) features (based on cytogenetics, ISS 3 or plasma cell leukemia) or ≤50 year regardless of risk status with an 8/8 HLA matched donor are eligible to participate in this prospective trial. After a BTZ-based induction and ASCT, outpatient NMA alloSCT is performed with either fludarabine and cyclophosphamide (sibling donor) or fludarabine and TBI 2 Gy (unrelated donor) followed by peripheral blood stem cells. GVHD prophylaxis consists of tacrolimus and MMF. BTZ is initiated on day +120 post-alloSCT at 1.3 mg/m2 every 2 weeks for 1 year. Response evaluation is based on IMWG criteria. Bone marrow MRD evaluation is performed on 10x106 nucleated cells with highly sensitive (≥10-5) next-generation flow cytometry using the 8-color EuroFlow protocol (CD45, CD38, CD138, CD56, CD19, CD27, CD81, CD117, CyIgκ and CyIgλ) before alloSCT, before BTZ and every 3 months for 2 years. Immunophenotypic complete response (iCR) is defined as stringent CR in addition to 2 consecutive negative MRD results. aGVHD and cGVHD are evaluated prospectively. Results: As of June 29th 2018, 37 patients have been enrolled with a median age of 53 (range: 35-64) years. ISS 3 is found in 43% and HR cytogenetics in 54% (5% del17p, 14% t(4;14), 22% gain 1q21 and 14% >1 HR cytogenetics). Induction consisted of CyBorD (81%) or VTD (19%) for a median of 4 (range: 4-7) cycles. Median times from induction to ASCT and from ASCT to alloSCT were 5.8 and 4.4 months, respectively. Sibling and unrelated donor transplants were performed in 43% and 57%, respectively. KPS and HCT-CI were 90 (range 80-100) and 1 (range 0-3), respectively. Median follow-up is 21 (range 0-39) months after alloSCT. Of enrolled patients, 34 have started BTZ and received 92.5% of planned doses, with no dose reduction needed for toxicity. Observed grade ≥3 non-hematologic toxicities possibly/related to BTZ included diarrhea (n=1), viral hemorrhagic cystitis (2 adenovirus, 1 BK) and nocardial brain abscesses (n=1). Cumulative incidences of grade II-IV and III-IV aGVHD were 26% and 11%. Incidences of all grade, moderate/severe and severe cGVHD at 24 months were 61%, 47% and 10%, respectively, with mostly mouth, skin and liver involvement. Compared to 27 historical controls who did not receive BTZ after tandem transplant, the incidence of moderate/severe cGVHD was much lower in BTZ recipients (47 vs 78%; p=0.002). After reviewing each target organ involvement, mouth and eye cGVHD were significantly less severe with BTZ. Three patients died, one from myeloma progression and 2 from grade III aGVHD, with a 24-month non-relapse mortality of only 8%. BTZ consolidation improved depth of response, increasing ≥CR rate from 64% to 85% and iCR rate from 25% to 59%, regardless of cytogenetic abnormalities (Table 1). Probability of progression-free survival (PFS) at 24 months was 65% (CI 95%: 42-81) while overall survival (OS) was 90% (CI 95%: 70-97; Fig. 1A). The cumulative incidence of progression at 24 months was 28%. Importantly, the presence of ≤50 myeloma cells in the bone marrow 10 months post-alloSCT (after 6 months of BTZ) was associated with a significantly lower probability of progression (15% versus 80%; p=0.03; Fig. 1B). Conclusion: Tandem ASCT-NMA alloSCT followed by BTZ consolidation results in a remarkably high rate of ≥CR, including iCR. For the first time in allogeneic transplant recipients, MRD evaluation using the EuroFlow protocol demonstrates that identification of ≤50 myeloma cells in the bone marrow 10 months after alloSCT/6 months after BTZ seems predictive of a better outcome. If confirmed, this landmark could be used to design future therapeutic interventions in order to decrease the risk of relapse after tandem transplant. Finally, BTZ following alloSCT is safe and may contribute to decrease both incidence and severity of cGVHD. Disclosures Leblanc: Amgen Canada: Membership on an entity's Board of Directors or advisory committees; Janssen Inc.: Membership on an entity's Board of Directors or advisory committees; Celgene Canada: Membership on an entity's Board of Directors or advisory committees; Takeda Canada: Membership on an entity's Board of Directors or advisory committees. Sebag:Amgen Canada: Membership on an entity's Board of Directors or advisory committees; Takeda Canada: Membership on an entity's Board of Directors or advisory committees; Janssen Inc.: Membership on an entity's Board of Directors or advisory committees; Celgene Canada: Membership on an entity's Board of Directors or advisory committees. Cohen:ExCellThera: Patents & Royalties: Royalities from sales of UM171. Kiss:Alexion: Membership on an entity's Board of Directors or advisory committees, Research Funding; Otsuka: Membership on an entity's Board of Directors or advisory committees, Research Funding. Lachance:ExCellThera: Patents & Royalties: Royalities from sales of UM171. Roy:Kiadis Pharma: Other: Travel support; University of Montreal: Patents & Royalties: Author on patent; Hopital Maisonneuve Rosemont: Patents & Royalties: Author on patent. Sauvageau:ExCellThera: Employment, Equity Ownership. Roy:Janssen Inc.: Membership on an entity's Board of Directors or advisory committees; Takeda Canada: Membership on an entity's Board of Directors or advisory committees; Celgene Canada: Membership on an entity's Board of Directors or advisory committees; Celgene: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5451-5451
Author(s):  
Alexandre Bazinet ◽  
Ryan N Rys ◽  
Claudia M Wever ◽  
Amadou Barry ◽  
Celia Greenwood ◽  
...  

Background: Chronic lymphocytic leukemia (CLL) has a classic immunophenotype, consisting of light chain restriction, CD5+, CD19+, dim CD20, CD23+, CD43+, CD200+, CD10- and CD79b-. This distinguishes it from normal B cells and other lymphoproliferative disorders (LPDs). Antibodies targeting these antigens are included in two 8-color flow cytometry panels developed by the Euroflow consortium for the work up of B cell LPDs. Combining these antibodies into one 10-color panel would be more cost-effective. Furthermore, new CLL therapies can induce deep remissions, creating an increasing demand to measure minimal residual disease (MRD), defined as having over 1 residual leukemic cell per 10,000 leukocytes (10-4). The current international standardized approach for measuring MRD established by the European Research Initiative on CLL (ERIC) uses a panel of antibodies targeting CD3, CD5, CD19, CD20, CD22, CD43, CD79b and CD81. However, these antibody-fluorochrome combinations are different than those used by the Euroflow diagnostic panels. Thus laboratories considering implementing MRD testing would need to purchase antibodies for 3 different panels (2 diagnostic and 1 MRD). We expanded the Euroflow 8-color lymphocyte screening tube (LST) to include CD200 and CD23, such that CLL can be detected in one 10-color tube, at levels as low as 0.01%. The goal of this study was to determine the potential cost savings in implementing this new panel and to determine if it is sensitive enough to detect MRD. Methods: We calculated the number of samples analyzed with our modified 10-color LST tube (mLST1, obtained lyophilized) from April 2018 to March 2019 to rule out an LPD and the number of antibody aliquots saved using this approach compared to the standard 2-tube Euroflow method. We also created a version of the above-mentioned panel (mLST2) using liquid antibodies to increase the generalizability of our results, substituting CD38 with CD43 to see if this improved MRD detection (see panels below). For MRD testing, we used CLL samples from 24 different patients to produce 60 MRD samples at various concentrations of leukemic cells. Samples were prepared by spiking CLL cells into suspensions of normal leukocytes at approximate concentrations of 0.1%, 0.01% and 0.001%. Each sample was aliquoted and stained with the three panels: ERIC, mLST1 and mLST2. Data was acquired using a BD FACSCanto II or a BD FACSAria Fusion and analysed using BD FACSDiva software. CLL cells were identified based on differential expression of key markers and MRD was calculated as the number of CLL cells/total leukocytes. MRD positivity was defined as ≥ 0.01%. Agreement between the panels was assessed using the Bland-Altman plot method. We also calculated the percentage agreement between the panels in identifying MRD positivity. Results: In 1 year, mLST1 was performed on 474 samples, of these 220 had an LPD and 123 (56%) had a classic CLL phenotype, obviating the need for further testing. This resulted in the net savings of 476 antibody aliquots. For MRD assessment, differential expression of CD5 and CD20 were the most significant contributors in distinguishing CLL from normal B cells using the mLST1 and mLST2. We identified one CLL case with an atypical immunophenotype (dim CD5, bright CD20) which proved difficult to gate using a mLST panel. There was agreement in MRD results obtained with the mLST panels and the ERIC panel. For values above the limit of quantification, the 95% limit of agreement was ±0.3369 log for the ERIC vs mLST1 comparison and ±0.3485 log for the ERIC vs mLST2 comparison. Thus, variability in MRD levels between the panels was less than 2-fold the majority of the time, which we considered clinically acceptable as MRD is measured on an exponential scale. The ERIC panel and the mLST1 had 88.3% agreement in distinguishing MRD-positive versus MRD-negative samples. Agreement was 93.3% between the ERIC panel and the mLST2. Conclusions: Using a modified 10-color LST panel for both diagnosis and MRD measurement of CLL is feasible. The advantages are increased familiarity with the antibodies and potential cost savings, making MRD accessible to more cytometry laboratories. Atypical CLL cases without the usual CD5 positivity and dim CD20 are very difficult to gate using an LST panel. In these cases, the ERIC panel is clearly superior as CD22, CD79b, CD81 and CD43 can still provide separation between the malignant and normal lymphocytes. Disclosures Bazinet: BD Biosciences: Other: Provided a significant amount of the antibodies used in this project free of cost.. Wever:Teva Canada Innovation: Employment. Gimmig:BD Biosciences: Employment. Johnson:Lundbeck: Employment, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel fees, gifts, and others, Research Funding; Merck: Consultancy, Honoraria; Roche: Consultancy, Employment, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel fees, gifts, and others, Research Funding; Abbvie: Consultancy, Employment, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; BD Biosciences: Other: Provided a significant proportion of the antibodies used in this project free of cost.; BMS: Consultancy, Honoraria; Seattle Genetics: Honoraria.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 45-47
Author(s):  
Josu de la Fuente ◽  
Dirk-Jan Eikema ◽  
Paul Bosman ◽  
Robert F Wynn ◽  
Miguel Díaz ◽  
...  

Congenital sideroblastic anaemias (CSA) are a rare group of disorders characterized by the presence of pathologic iron deposits within the mitochondria of erythroid precursors (ring sideroblasts) in the bone marrow due to heterogenous germline mutations leading to defects in mitochondrial heme synthesis, iron-sulfur (Fe-S) cluster biogenesis, or protein synthesis. Patients present with anaemia and relative reticulocytopenia, and systemic iron overload secondary to chronic ineffective erythropoiesis, leading to end-organ damage. The disease is heterogenous underlying the genetic variability and the variable response to treatment. Although a number of CSA patients have received a bone marrow transplant, the outcomes and toxicities are not known. This status makes it very difficult to understand the role of BMT in the management of CSA. A search in the EBMT database identified 28 patients receiving a HSCT for CSA between 1998 to 2018 by 24 participating centres. The median year of transplantation was 2014 (IQR 2004-2016). The distribution was equal between males (n=14) and females (n=14). The median age at transplantation was 7 years of age (3-10 years). Fifteen patients had a sibling HSCT (88%), one a family matched donor HSCT (6%) and one an unrelated matched (6%), the type of transplant being unknown in others (n=11). The source of stem cells was bone marrow in 20 cases (74%), peripheral blood in 4 cases (15%), cord blood in 2 (7%) and combined bone marrow and cord in one (4%). Five cases had a Bu/Cy based conditioning regimen, 4 had Bu/fludarabine based regimen and three fludarabine/treosulfan based conditioning with the rest having a variety of approaches. Eighty-six percent of cases had serotherapy with ATG or alemtuzumab. The median follow-up was 31.6 months (95% CI, 12.2-74.1%). The overall survival at 12 and 24 months was 88% (76-100) and 82% (66-99), respectively (figure 1). The median neutrophil engraftment was 18 (15-21) days and platelet engraftment &gt;20 x 109/L was 29 (20-51) days, with a graft failure incidence of 7% (0-17) at 12 months. Two patients suffered from VOD. There were four deaths, three of which were related to transplant complications. The event free survival (survival without graft failure, relapse and second transplant) at 12 and 24 months was 85% (72-99) (figure 2). Six patients developed acute GvHD grade II and one case grade III; giving a grade II/III incidence of 28% (10-46). There was one case of limited and one of chronic GvHD, giving an incidence of 11% (0-26%) at 12 months and 24 months. In conclusion, whilst HSCT for CSA is a rare occurrence, these data demonstrate that HSCT for this condition is feasible and the outcomes are in keeping with those obtained for transplantation for transfusion dependent anaemias during the same time-period. Disclosures Handgretinger: Amgen: Honoraria. Moraleda:Gilead: Consultancy, Other: Travel Expenses; Jazz Pharmaceuticals: Consultancy, Research Funding; Novartis: Consultancy, Other: Travel Expenses; Sandoz: Consultancy, Other: Travel Expenses; Takeda: Consultancy, Other: Travel Expenses. Risitano:Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Alnylam: Research Funding; Alexion: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Jazz: Speakers Bureau; Roche: Membership on an entity's Board of Directors or advisory committees; Samsung: Membership on an entity's Board of Directors or advisory committees; Amyndas: Consultancy; RA pharma: Research Funding; Biocryst: Membership on an entity's Board of Directors or advisory committees; Apellis: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Achillion: Membership on an entity's Board of Directors or advisory committees; Pfizer: Speakers Bureau. Peffault De Latour:Amgen: Research Funding; Pfizer: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Apellis: Membership on an entity's Board of Directors or advisory committees; Alexion Pharmaceuticals Inc.: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2455-2455
Author(s):  
Carlos Bachier ◽  
Henning Schade ◽  
Behyar Zoghi ◽  
Aravind Ramakrishnan ◽  
Nirav N. Shah

Abstract Introduction: Autologous stem cell transplants (ASCT) are standard of care for patients with primary refractory or recurrent Hodgkin lymphoma (HL). While transplant results in cure for some patients, others relapse and succumb from their disease. Studies have found high expression of programmed death ligand 1 (PD-L1) in HL cells. The anti-PD-1 monoclonal antibody, nivolumab, has been safe and efficacious in the treatment of relapsed, refractory HL (Ansell et al. 2015). We evaluated the safety and efficacy of nivolumab maintenance therapy post-ASCT in high risk for relapse Hodgkin disease. Methods: Patients with HL with high risk of residual disease following ASCT ( high risk defined as refractory disease, relapse &lt;12 months, or relapse ≥12 months with extranodal disease after frontline therapy) received nivolumab (240 mg IV every 2 weeks) starting 45-180 days post-transplant for a maximum of 6 months of treatment. Patients were followed for AEs through 100 days after the last dose of drug. PET-CT response assessments were performed 1-3 month, 6 month, and 12 month post-ASCT. The primary objective was to evaluate the safety and tolerability of nivolumab as maintenance therapy early after ASCT. The secondary objective was to evaluate progression-free survival (PFS) at 12 months post-transplant. Results: To date, 37 patients were enrolled; median age 36 years; 25 patients (68%) male. The median number of prior systemic regimens was 2 (range 2-4). 25 patients (68%) had relapsed disease, and 12 patients (32%) had primary refractory disease. 18 patients (49%) had extranodal disease at relapse, 6 patients (16%) had B-symptoms at relapse, and 11 patients (30%) had residual disease after salvage, including 10 patients (27%) of whom had 2-3 prior salvage therapies. 22 patients (60%) had received prior brentuximab, and 3 patients (8%) had received prior nivolumab or pembrolizumab. 36 patients received ASCT and 1 patient received tandem ASCT. At the time of data cutoff, 28 patients (76%) had discontinued nivolumab treatment, 22 patients (60%) because they had completed the 6-month treatment course, 4 patients (11%) due to an adverse event (AE) (1 patient each with pain, pneumonitis, rhabdomyolysis, or hypothyroidism), and 2 patients (5%) due to disease progression. The median duration of treatment was 22.1 weeks. 17 patients (46%) experienced a treatment-related AE (TRAE), of which 5 patients (14%) experienced a ≥Grade 3 TRAE. The most common (≥5%) TRAEs were diarrhea, fatigue, bone pain, neutrophil count decreased, pruritus, rash, and vomiting. 2 patients experienced a treatment-related serious AE (pneumonitis, rhabdomyolysis). There were no treatment-related deaths. With a median follow up of 9.2 months, the median PFS and overall survival (OS) have not been reached. The 6 month PFS is 92.1% and the 12-month OS is 100%. There were no differences in OS when stratified based on prior treatment. Conclusions: The use of nivolumab maintenance early after ASCT is safe and tolerable in this high risk patient population. Early efficacy data is promising, but data need to mature to determine the 12 month PFS. Figure 1 Figure 1. Disclosures Bachier: CRISPR: Membership on an entity's Board of Directors or advisory committees; Autolus: Membership on an entity's Board of Directors or advisory committees; Nkarta: Membership on an entity's Board of Directors or advisory committees; Mana: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; BMS: Membership on an entity's Board of Directors or advisory committees. Shah: Umoja: Consultancy; Incyte: Consultancy; Legend: Consultancy; Kite: Consultancy; Miltenyi Biotec: Consultancy, Honoraria, Research Funding; Lily: Consultancy, Honoraria, Research Funding; Epizyme: Consultancy.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4116-4116
Author(s):  
Anna Dodero ◽  
Anna Guidetti ◽  
Fabrizio Marino ◽  
Cristiana Carniti ◽  
Stefania Banfi ◽  
...  

Introduction: Diffuse Large B-Cell Lymphoma (DLBCL) is an heterogeneous disease: 30-40% of cases have high expression of MYC and BCL2 proteins (Dual Expressor, DE) and 5-10% have chromosomal rearrangements involving MYC, BCL2 and/or BCL6 (Double-/ Triple-Hit, DH/TH). Although the optimal treatment for those high-risk lymphomas remains undefined, DA-EPOCH-R produces durable remission with acceptable toxicity (Dunleauvy K, Lancet 2018). TP53 mutation is an independent marker of poor prognosis in patients (pts) with DLBCL treated with R-CHOP therapy. However, its prognostic value in poor prognosis lymphomas, receiving intensive therapy, has not been investigated yet. Methods: A series of consecutive pts (n=87) with biopsy proven diagnosis of DE DLBCL (MYC expression ≥40% and BCL2 expression ≥ 50% of tumor cells) or DE-Single Hit (DE-SH, i.e., DE-DLBCL with a single rearrangement of either MYC, BCL2 or BCL6 oncogenes) or DE-DH/TH (MYC, BCL2 and/or BCL6 rearrangements obtained by FISH) were treated with 6 cycles of DA-EPOCH-R and central nervous system (CNS) prophylaxis consisting of two courses of high-dose intravenous Methotrexate. Additional eligibility criteria included age ≥18 years and adequate organ functions. Cell of origin (COO) was defined according to Hans algorithm [germinal center B cell like (GCB) and non GCB)]. TP3 mutations were evaluated by next generation sequencing (NGS) based on AmpliseqTM technology or Sanger sequencing and considered positive when a variant allelic frequency ≥10% was detected. Results: Eighty-seven pts were included [n=36 DE only, n=32 DE-SH (n=8 MYC, n=10 BCL2, n=14 BCL6), n=19 DE-DH/TH] with 40 patients (46%) showing a non GCB COO. Pts had a median age of 59 years (range, 24-79 years). Seventy-three pts (84%) had advanced disease and 44 (50%) an high-intermediate/high-risk score as defined by International Prognostic Index (IPI). Only 8 of 87 pts (9%) were consolidated in first clinical remission with autologous stem cell transplantation following DA-EPOCH-R. After a median follow-up of 24 months, 73 are alive (84%) and 14 died [n=12 disease (n=2 CNS disease); n=1 pneumonia; n=1 suicide]. The 2-year PFS and OS were 71% (95%CI, 60-80%) and 76% (95%CI, 61%-85%) for the entire population. For those with IPI 3-5 the PFS and OS were not significant different for DE and DE-SH pts versus DE-DH/TH pts [64% vs 57% p=0.77); 78% vs 57% p=0.12)]. The COO did not influence the outcome for DE only and DE-SH [PFS: 78% vs 71% (p=0.71); 92% vs 86% (p=0.16) for GCB vs non -GCB, respectively]. Fourty-six pts (53%;n=18 DE only, n=18 DE-SH, n=10 DE-DH/TH ) were evaluated for TP53 mutations with 11 pts (24%) carrying a clonal mutation (n=6 in DE, n=3 in DE-SH, n=2 in DE-DH/TH). The 2-year PFS and OS did not significantly change for pts DE and DE-SH TP53 wild type as compared to DE and DE-SH mutated [PFS: 84 % vs 77%, (p=0.45); OS: 87% vs 88%, (p=0.92)]. The two pts DE-DH/TH with TP53 mutation are alive and in complete remission.Conclusions: High risk DLBCL pts treated with DA-EPOCH-R have a favourable outcome independently from high IPI score, DE-SH and DE-DH/TH. Also the presence of TP53 mutations does not negatively affect the outcome of pts treated with this intensive regimen. The efficacy of DA-EPOCH-R in overcoming poor prognostic genetic features in DLBCL should be confirmed in a larger prospective clinical trial. Disclosures Rossi: Daiichi-Sankyo: Consultancy; Roche: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees; Gilead: Membership on an entity's Board of Directors or advisory committees; Sanofi: Membership on an entity's Board of Directors or advisory committees; Abbvie: Membership on an entity's Board of Directors or advisory committees; Pfizer: Membership on an entity's Board of Directors or advisory committees; Jazz: Membership on an entity's Board of Directors or advisory committees; Astellas: Membership on an entity's Board of Directors or advisory committees; Novartis: Honoraria; Mundipharma: Honoraria; BMS: Honoraria; Sandoz: Honoraria. Carlo-Stella:Takeda: Other: Travel, accommodations; F. Hoffmann-La Roche Ltd: Honoraria, Other: Travel, accommodations, Research Funding; Rhizen Pharmaceuticals: Research Funding; Celgene: Research Funding; Amgen: Honoraria; AstraZeneca: Honoraria; Janssen Oncology: Honoraria; MSD: Honoraria; BMS: Honoraria; Genenta Science srl: Consultancy; Janssen: Other: Travel, accommodations; Servier: Consultancy, Honoraria, Other: Travel, accommodations; Sanofi: Consultancy, Research Funding; ADC Therapeutics: Consultancy, Other: Travel, accommodations, Research Funding; Novartis: Consultancy, Research Funding; Boehringer Ingelheim: Consultancy. Corradini:AbbVie: Consultancy, Honoraria, Other: Travel Costs; KiowaKirin: Honoraria; Gilead: Honoraria, Other: Travel Costs; Amgen: Honoraria; Celgene: Honoraria, Other: Travel Costs; Daiichi Sankyo: Honoraria; Janssen: Honoraria, Other: Travel Costs; Jazz Pharmaceutics: Honoraria; Kite: Honoraria; Novartis: Honoraria, Other: Travel Costs; Roche: Honoraria; Sanofi: Honoraria; Takeda: Honoraria, Other: Travel Costs; Servier: Honoraria; BMS: Other: Travel Costs.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5083-5083
Author(s):  
Raffaele Palmieri ◽  
Luca Maurillo ◽  
Alfonso Piciocchi ◽  
Maria Ilaria Del Principe ◽  
Valentina Arena ◽  
...  

Background: Mutations of the gene encoding Fms Related Tyrosine Kinase 3 (FLT3), at the juxta-membrane level (ITD), represent the most common lesions found in Acute Myeloid Leukemia (AML), identifying a subgroup of patients (pts) with unfavorable prognosis. FLT3-ITD mutations are considered an unreliable tool for measurable residual disease (MRD) monitoring, due to their intraclonal heterogeneity and instability during the course of disease. Instead, multiparametric flow cytometry (MFC) may represent an alternative to monitor MRD in this molecular subset. In fact, through the recognition and monitoring of leukemia associated immunophenotypes, MFC is applicable to > 90% of AML patients with a sensitivity of 10-4. Aims: The aim of our study was to investigate the reliability of MFC in MRD assessment of 72 FLT3-ITD positive pts whose treatment allocation was prospectively decided according to the genetic/cytogenetic profile at diagnosis and post consolidation MRD. FLT3-ITD pts were to receive, after induction and consolidation, allogeneic stem cell transplant (ASCT), whatever the source of stem cells. In this subgroup analysis, we investigated if FLT3-ITD mutated pts have a different propensity to achieve high quality (e.g. MRD negative) complete remission as compared to FLT3 wildtype ones. Furthermore, we seek for a correlation between different levels of MRD and overall (OS) and disease-free survival (DFS). Methods: We included in the analysis 72 pts with de novo AML carrying FLT3-ITD mutations whose MRD assessment at the post-consolidation timepoint was available. Pts were defined as MRD-negative, when obtaining a residual leukemic cells count below the threshold of 3.5x10-4 (0.035%). MRD positive pts (with MRD ≥ 3.5x10-4 RLC) were stratified into 3 classes according to the levels of MRD (0.035%-0.1%; >0.1%-1%; >1%). We compared the MRD status and clinical outcome with a matched group of FLT3 wildtype AML (n = 203) treated in the same protocol. Results: Overall median age was 49 (range 18-60.9). The 2 cohorts were balanced in terms of age and sex distribution. In the FLT3-ITD group, 80/126 (64%) cases carried a concomitant NPM1 mutation vs 107/374 (28.6%) of FLT3 wildtype ones (p <0.001). Furthermore, FLT3 mutated pts had a median WBC count of 35x109/L vs 9.5x109/L of those FLT3 wildtype (p < 0.001). MRD determination after consolidation cycle was available in 72/126 FLT3-ITD pts (57%) and in 203/374 FLT3 wildtypeones (54.3%), respectively. After having received induction and consolidation course, 47/72 FLT3-ITD pts (65,2%) were submitted to allogenic stem cells transplantation (ASCT). At the post-consolidation time-point, MRD negativity rate was significantly lower in FTL3-ITD pts (27/72, 37.5%) as compared to those FLT3 wildtype (94/203, 46.3%). Furthermore, 38/72 (52.8%) and 10/72 (13.9%) FLT3-ITD pts had a level of MRD > 0.1% and > 1%, respectively as compared to 65/203 (33.0%) and 15/203 (7.4%) of FLT3 wildtypeones, respectively (p=0.017). When considering the different MRD stratification levels of FLT3-ITD pts, OS probability at 24 months was 57.2% (27 pts), 71.4% (7 pts), 53.6% (28 pts) and 20% (10 pts), for the MRD categories <0.035%, 0.035%-0.1%, >0.1%-1%, >1%, respectively (p=0.028). DFS probability at 24 months was 53.8% (27 pts), 71.4% (7 pts), 34.9% (27 pts) and 20% (10 pts), for the MRD categories <0.035%, 0.035%-0.1%, >0.1%-1%, >1%, respectively (p=0.038). Summary/Conclusion: We demonstrated that MRD determination by MFC is a reliable tool to assess remission quality and prognosis in FLT-ITD positive patients. This subpopulation shows a lower propensity to obtain a MRD negative CR, with the majority of pts maintaining an amount of MRD > 0.1% after standard treatment. Even though most of these pts were addressed to ASCT, post-consolidation MRD maintained its negative impact on OS and DFS, particularly for those pts with MRD >1%. In the attempt to improve the quality of response, prevent leukemia recurrence and pursue a durable remission, delivery of FLT3 inhibitors as a maintenance after transplant may represent a promising option. Disclosures Venditti: Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; Abbvie: Consultancy; Astellas: Membership on an entity's Board of Directors or advisory committees; Pfizer: Consultancy, Membership on an entity's Board of Directors or advisory committees; Daiichi-Sankyo: Consultancy, Membership on an entity's Board of Directors or advisory committees. Buccisano:Janssen: Membership on an entity's Board of Directors or advisory committees; Astellas: Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2638-2638 ◽  
Author(s):  
Amanda Winters ◽  
Jonathan A Gutman ◽  
Enkhtsetseg Purev ◽  
Brett M. Stevens ◽  
Shanshan Pei ◽  
...  

Background: Venetoclax (ven) was approved for older untreated acute myeloid leukemia (AML) patients due to high response rates and durable remissions. As a participating site in the dose escalation study, we observed deeper/more durable responses in some who received >400mg ven. We also noted 16/33 discontinued azacitidine (aza) after achieving a response; 9 relapsed and 7 remained in long term remission on ven only. Based on these observations, we designed a study that hypothesized: A)Higher initial doses of ven would allow deeper/more durable responses, and B)Multi modality high sensitivity measurable residual disease (MRD) testing could identify patients able to discontinue aza and remain on maintenance ven. Methods: This is an ongoing phase 2 study (NCT03466294) of 42 untreated AML patients ≥60 who decline/are ineligible for induction. Patients have adequate organ function and white blood cell counts <25x109/L (hydrea permitted). In cycle 1, patients receive aza 75mg/m2 on days (d) 1-7 and ven, escalated from 100 to 200 to 400 to 600mg on d 1-4. Ven continues at 600mg d 5-28 and bone marrow biopsies (BMBXs) are performed on d 8 and 28. Patients who achieve morphologic remission without count recovery have up to 14 days off therapy before subsequent cycles, with growth factor support; "upgraded" responses are recorded if count recovery occurs. Non responders discontinue or receive up to two additional cycles of aza and ven 600mg. Responders who remain MRD+ by multiparameter flow cytometry (MPFC, Hematologics) and/or digital droplet PCR (ddPCR) for as many identifiable diagnostic genes as possible also receive up to 2 additional cycles of aza and ven 600mg. MRD+ responders after 3 cycles continue aza and ven 400mg until toxicity/progression. Patients who experience MRD- responses at any time stop aza and continue ven 400mg daily (Fig 1). Results: 30 patients enrolled between May 2018 and July 2019; median age is 71 (60-88), 10% evolved from MDS and 10% and 73% had intermediate and unfavorable risk disease by ELN, respectively (Table 1). 732 adverse events (AEs) occurred; 46 (6%) were serious, the most common were neutropenic fever (37%) and pneumonia (13%). The most common >grade 2 related AEs were leukopenia (53%), thrombocytopenia (44%) and neutropenia (35%); there were no related grade 5 AEs. The overall response rate was 70% (21/30; CR=19, MLFS=2). Median number of cycles to achieve best response was 1. Significant blast reductions were seen on day 8; of the 28 with interpretable day 8 BMBXs, 10 achieved MLFS on day 8. 4 completed ≥1 cycle and were refractory. An additional 4 did not complete cycle 1: 1 died of disease and 3 elected to come off therapy (all subsequently died of disease). Four (19%) responders relapsed, after a median 180 days (27-279). With median follow up of 214 days, median response duration has not been reached. 10 patients died, after a median 65 days (29-256); 1/30 died within 30 days. Median overall survival has not been reached. Of the 26 who completed ≥1 cycle, 19 were MRD- by MPFC, including 18/19 who achieved CR. Of these 26, 3 were not monitored by ddPCR: for 2 patients this was due to the absence of detectable baseline mutations and for 1 patient it was due to refractory disease. The remaining 23 had ddPCR monitoring; 3 became MRD- by this modality (Fig 2). All 3 were also MRD- by MPFC and per protocol discontinued aza and initiated ven maintenance (Fig 1). MRD negativity by both parameters occurred after cycles 1, 2 and 3, respectively. One MRD- patient relapsed after 216 days; two remain in remission after 301 and 124 days. An additional 4 who achieved MRD+ responses discontinued aza at their insistence (and in violation of the protocol); 1 relapsed after 279 days, and 3 remain in ongoing remission. Univariate predictors of refractory disease were FAB M0/M1 (OR 0.070, p=0.02) and RAS pathway mutations (OR 14.25, p=0.02). Conclusions: Higher initial doses of ven are tolerated in this population. Blast reduction occurs quickly in many patients (day 8), for this low intensity regimen. Response rates are consistent with lower doses of ven. Very deep responses, as measured by highly sensitive MRD methods (MPFC and ddPCR are capable of sensitivity up to 0.02%), are attainable. Longer follow up time will determine if higher ven doses and MRD-driven decisions related to continuation of aza result in more durable responses. Increased maturation of blasts and RAS pathway mutations are predictors for refractory disease. Disclosures Lyle: Pfizer: Membership on an entity's Board of Directors or advisory committees; Daiichi Sankyo Incyte: Membership on an entity's Board of Directors or advisory committees; Agios: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees. Pollyea:Agios: Consultancy, Membership on an entity's Board of Directors or advisory committees; Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees; Astellas: Consultancy, Membership on an entity's Board of Directors or advisory committees; Gilead: Consultancy, Membership on an entity's Board of Directors or advisory committees; Abbvie: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Pfizer: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees; Celyad: Consultancy, Membership on an entity's Board of Directors or advisory committees; Diachii Sankyo: Consultancy, Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy, Membership on an entity's Board of Directors or advisory committees; Forty-Seven: Consultancy, Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document