scholarly journals A Simple, Safe and Effective Approach for Personalized Precision Ex Vivo Gene Therapy Based on Autoinfusion of Gene-Modified Leucoconcentrate (GML) Prepared from Routine Unit of Patient's Peripheral Blood

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 31-31
Author(s):  
Rustem I. Islamov ◽  
Michail E. Sokolov ◽  
Zufar Z Safiullov ◽  
Maria A Davleeva ◽  
Ravil R Garifulin ◽  
...  

Nowadays gene and cell therapy become the basic methods in regenerative medicine. However only few gene and cell products are currently approved for clinical usage. Biosafety problems, complexity of cell and gene technologies and high cost of manufacturing are the main reasons for the slow introduction of such approaches in practical medicine. Treatment of hereditary diseases of the immune system based on the correction of the mutant gene by delivering functional recombinant gene into WBC is the first successfully employed in the clinical practice approach of cell-mediated or ex vivo gene therapy. Earlier we have reported the strategy of the cell-mediated gene therapy based on umbilical cord blood mononuclear cells transduced with adenoviral vectors carrying recombinant genes encoding neurotrophic factors for treatment neurodegenerative diseases, neurotrauma and stroke. Significant disadvantage of this method is the usage of the umbilical cord blood mononuclear cells as a cell carrier for the therapeutic genes. Considering immunodeficiency treatment and our own data we developed a new approach of recombinant gene delivery for personalized ex vivo gene therapy. The method is based on autoinfusion of patient's WBC transduced with recombinant therapeutic genes for correction of certain pathological conditions. In the present study for the first time the human gene-modified leucoconcentrate (GML) producing recombinant reporter gene encoding green fluorescent protein (GFP) was obtained without culturing WBC in vitro. The routine unit of peripheral blood (450 ml) was collected into the plastic blood bag and the leucocyte- and platelet-rich concentrates (50 ml) were obtained by standard method using Macopress Smart (Macopharma, France). Afterwards the equal volume of hydroxyethyl starch 6% was added into the plastic blood bag which was centrifuged (DP-2065 R PLUS, Centrifugal Presvac RV; Presvac, Buenos Aires, Argentina) at 350 rpm for 10 min at 10°C. The obtained supernatant was transferred into the new plastic blood bag using manual plasma extractor FK-01 (Leadcore, Russia) and 200 ml of saline was added into the bag which was centrifuged at 1300 rpm for 10 min at 10°C and the supernatant was expressed out of the bag so that the remaining solution in the bag (30 ml) contained leucoconcentrate (WBC - 45.56 ± 23.93 × 106/ml and RBC - 1.76 ± 3.33 × 109/ml). Transduction of WBC with chimeric adenoviral vector (Ad5/35) carrying GFP gene was performed in the plastic bag with MOI 5 according to the count of WBC in the leucoconcentrate. After transduction for 12 hours, 200 ml of saline was added to the bag with leucoconcentrate, the mixture was centrifuged at 1000 rpm for 10 min at 10°C and the supernatant was squeezed out of the bag. The remained in the bag solution (30 ml) was considered as gene-modified leucoconcentrate carrying GFP gen (WBC - 22.63 ± 8.90 × 106/ml and RBC - 1.77 ± 1.21 × 109/ml). For in vitro study of GFP gene expression the samples of GML-GFP were cultivated for 60 hours after GML-GFP preparation. Fluorescent microscopy in the cytoplasm of the transduced WBC showed specific intensive green fluorescence. Flow cytometry analysis demonstrated that 2.5% of WBC from the GML-GFP efficiently expressed GFP. Thus leucoconcentrate after 72 h of transduction with Ad5/35-GFP with MOI 5 resulted in 2.5% of the GFP-positive cells. Thus the results of this study represent a simple, safe and effective approach for preparation of GML for personalized ex vivo gene therapy aimed at temporary production of the specific recombinant biologically active molecules for pathogenetic therapy of the varied nosological form, such as trauma, ischemic, degenerative, autoimmune, infection and other diseases. This study was supported by the grant of Russian Science Foundation 19-75-10030. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 5797-5797
Author(s):  
Farid V. Bashirov ◽  
Ilnur I. Salafutdinov ◽  
Michail E. Sokolov ◽  
Andrew A. Izmailov ◽  
Vage A. Markosyan ◽  
...  

Abstract Cell-mediated (ex-vivo) gene therapy for the treatment of adenosine deaminase (ADA)-deficient severe combined immunodeficiency (SCID) had started in 1990 and nowadays it is the first marketing approval of an ex vivo gene therapy in Europe. The method based on ex-vivo transduction of peripheral blood lymphocytes with retroviral vector carrying the functional ADA gene in 2002 have been improved to use hematopoietic stem cell (HSC) for ex-vivo transduction with 100% survival and the evidence of safety and efficacy. Remarkably, umbilical cord blood mononuclear cells (UCB-MC) were successfully used for treatment of ADA deficiency in neonates as well. Meanwhile SCID is a very rare congenital disorder of the immune system although the option to use peripheral blood lymphocytes as cell carriers of the therapeutic genes for regenerative medicine is highly attractive. In our studies to overcome the neural cells death and stimulate neuroregeneration at neurodegenerative diseases (ALS), spinal cord injury (SCI), and stroke in animal models we employed ex-vivo triple gene therapy based on human UCB-MC transduced with adenoviral vectors carrying vascular endothelial growth factor (VEGF), glial cell-derived neurotrophic factor (GDNF) and neural cell adhesion molecule (NCAM). The reason for clinical application of UCB-MC is based on their availability, ease of preparation and potential for long term storage, as well as legislative, ethical and religious benefits for the transplantation. In our gene-cell construct NCAM was used for homing and survival of UCB-MC at the site of neurodegeneration. VEGF and GDNF are the molecules with well-known neuroprotective function. Moreover VEGF is useful in restoring of the microcirculation as well. The positive results in treatment of ALS mice (Islamov et al, 2016), SCI (Izmailov et al, 2017) and stroke in rats (Sokolov et al, 2018) let us to propose the rationality to use of UCB-MC as cell carriers for the therapeutic genes based on:(1) suitability for both auto- and allotransplantation; (2) low immunogenicity; (3) high level of transduction; (4) high capability of synthetic and secretory activity for production of recombinant therapeutic molecules as well as endogenous growth and neurotrophic factors, cytokines and chemokines; (5) the action of therapeutic molecules on target cells via the paracrine or endocrine mechanism; (6) duration of recombinant molecule production limited by adenoviral vector half-life; (7) elimination of UCB-MC in 1-2 month after administration and possible multiple transplantation. Important, cell-mediated gene delivery makes the viral antigens inside the ex-vivo transduced UCB-MC invisible to the recipient immune system and it is easy to control production of recombinant molecules via the level of cell transduction or the number of transplanted cells. Thus, the cord blood mononuclear cells can serve as powerful tools for address delivery of recombinant genes encoding therapeutic molecules for regenerative medicine. This study was supported by the grant of Russian Science Foundation No 16-15-00010. Kazan Federal University was supported by the Russian Government Program of Competitive Growth. Disclosures No relevant conflicts of interest to declare.


1992 ◽  
Vol 14 (7) ◽  
pp. 1279-1284
Author(s):  
Wilma Barcellini ◽  
Maria Orietta Borghi ◽  
Cristina Fain ◽  
Nicoletta Del Papa ◽  
Patrizia Favini ◽  
...  

2021 ◽  
Vol 171 (4) ◽  
pp. 541-546
Author(s):  
E. R. Andreeva ◽  
M. I. Ezdakova ◽  
P. I. Bobyleva ◽  
I. V. Andrianova ◽  
A. Yu. Ratushnyy ◽  
...  

2017 ◽  
Vol 98 (5) ◽  
pp. 763-769
Author(s):  
M E Sokolov ◽  
F V Bashirov ◽  
Z Z Safiullov

Aim. To develop a protocol of direct and cell-mediated gene therapy for ischemic stroke. Methods. Viral vector carrying green fluorescent protein (GFP) reporter gene was created on the basis of human adenovirus serotype 5 (Ad5). The umbilical blood supply was preserved according to instructions of Kazan State Medical Uuniversity Stem cell bank. Umbilical cord blood mononuclear cells were isolated in a ficoll density gradient by standard procedure and transduced with Ad5-GFP. Ischemic cerebral stroke in rats was caused by distal occlusion of the middle cerebral artery through trephination hole in a temporal bone under surgical microscope. Within four hours after modeling stroke in the anesthetized animals laminectomy was performed at the L4-L5 level, and (1) 0.9% sodium chloride solution, (2) Ad5-GFP and (3) umbilical cord blood mononuclear cells + Ad5-GFP were inserted intrathecally. Survival, targeted migration to the focus of neurodegeneration, the ability to synthesize recombinant protein and the effect of umbilical cord blood mononuclear cells on the infarction area were assessed using luminescent microscopy and morphometric analysis. Results. GFP expression in the area of the stroke was established 3 weeks after stroke modeling, both after intrathecal insertion of Ad5-GFP and after xenotransplantation of umbilical cord blood mononuclear cells Ad5-GFP transduced ex vivo. When comparing the areas of cerebral infarction 3 weeks after modeling the stroke, in animals from umbilical cord blood mononuclear cells + Ad5-GFP group the median of the infarction area was 47.4% less than in animals receiving isotonic saline solution. Conclusion. Umbilical cord blood mononuclear cells + Ad5-GFP after intrathecal insertion to animals with ischemic stroke, are capable of targeted migration to the neurodegeneration site as well as of recombinant protein synthesis; the results suggest the expediency of delivering therapeutic genes to ischemic zone via umbilical cord blood mononuclear cells overexpressing neurotrophic factors.


Sign in / Sign up

Export Citation Format

Share Document