scholarly journals Large Scale Ex Vivo Expansion of Γδ T Cells Using Artificial Antigen Presenting Cells for the Treatment of Acute Myeloid Leukemia

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 7-8
Author(s):  
Justin C. Boucher ◽  
Bin Yu ◽  
Gongbo Li ◽  
Bishwas Shrestha ◽  
Jeffrey E. Lancet ◽  
...  

Patients with relapsed or refractory acute myeloid leukemia (AML) are at increased risk of mortality. Higher γδ T cell count in a bone marrow or peripheral blood of patients with leukemia is associated with better survival. However, γδ T cells are rare in the blood and functionally impaired or exhausted in patients with malignancies. Promising results are reported on the treatment of various malignancies with in vivo expansion of autologous γδ T cells using zoledronic acid (zol) and IL-2. Here we demonstrated that zol and IL-2, in combination with a novel genetically engineered K562 CD3/CD137L/CD28/IL15RA quadruplet artificial antigen presenting cell (aAPC), efficiently expand allogeneic donor-derived γδ T cells using a GMP-compliant protocol sufficient to achieve cell doses for future clinical use. We achieved a 633-fold expansion of γδ T cells after day 10 of co-culture with aAPC, the majority of which exhibited central (47%) and effector (43%) memory phenotypes. Additionally, >90% of the expanded γδ T cells expressed NKG2D, while they have low cell surface expression of PD1 and LAG2 inhibitory checkpoint receptors. In vitro real-time cytotoxicity analysis showed that expanded, previously cryopreserved, γδ T cells were effective in killing target cells. Our results demonstrate that large scale ex vivo expansion of donor-derived γδ T cells can be achieved with the use of CD3/CD137L/CD28/IL15RA quadruplet aAPC and zol/IL-2 for clinical application as promising antineoplastic immunotherapy. Figure 1 Disclosures Lancet: Abbvie: Consultancy; Agios Pharmaceuticals: Consultancy, Honoraria; Astellas Pharma: Consultancy; Celgene: Consultancy, Research Funding; Daiichi Sankyo: Consultancy; ElevateBio Management: Consultancy; Jazz Pharmaceuticals: Consultancy; Pfizer: Consultancy. Sallman:Celgene, Jazz Pharma: Research Funding; Agios, Bristol Myers Squibb, Celyad Oncology, Incyte, Intellia Therapeutics, Kite Pharma, Novartis, Syndax: Consultancy. Bejanyan:Kiadis Pharma: Membership on an entity's Board of Directors or advisory committees.

Blood ◽  
2001 ◽  
Vol 97 (9) ◽  
pp. 2764-2771 ◽  
Author(s):  
Beth D. Harrison ◽  
Julie A. Adams ◽  
Mark Briggs ◽  
Michelle L. Brereton ◽  
John A. Liu Yin

Abstract Effective presentation of tumor antigens is fundamental to strategies aimed at enrolling the immune system in eradication of residual disease after conventional treatments. Myeloid malignancies provide a unique opportunity to derive dendritic cells (DCs), functioning antigen-presenting cells, from the malignant cells themselves. These may then co-express leukemic antigens together with appropriate secondary signals and be used to generate a specific, antileukemic immune response. In this study, blasts from 40 patients with acute myeloid leukemia (AML) were cultured with combinations of granulocyte-macrophage colony-stimulating factor, interleukin 4, and tumor necrosis factor α, and development to DCs was assessed. After culture, cells from 24 samples exhibited morphological and immunophenotypic features of DCs, including expression of major histocompatibility complex class II, CD1a, CD83, and CD86, and were potent stimulators in an allogeneic mixed lymphocyte reaction (MLR). Stimulation of autologous T-cell responses was assessed by the proliferative response of autologous T cells to the leukemic DCs and by demonstration of the induction of specific, autologous, antileukemic cytotoxicity. Of 17 samples, 11 were effective stimulators in the autologous MLR, and low, but consistent, autologous, antileukemic cytotoxicity was induced in 8 of 11 cases (mean, 27%; range, 17%-37%). This study indicates that cells with enhanced antigen-presenting ability can be generated from AML blasts, that these cells can effectively prime autologous cytotoxic T cells in vitro, and that they may be used as potential vaccines in the immunotherapy of AML.


2006 ◽  
Vol 70B (6) ◽  
pp. 379-390 ◽  
Author(s):  
Jorg M. Aswald ◽  
Xing-Hua Wang ◽  
Sandra Aswald ◽  
Andrzej Lutynski ◽  
Mark D. Minden ◽  
...  

2012 ◽  
Vol 1 (9) ◽  
pp. 1614-1616 ◽  
Author(s):  
Julie Gertner-Dardenne ◽  
Cyril Fauriat ◽  
Norbert Vey ◽  
Daniel Olive

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4058-4058 ◽  
Author(s):  
Degang Song ◽  
Michael H. Swartz ◽  
Steve G. Biesecker ◽  
Fernando Borda ◽  
Rutul R. Shah ◽  
...  

Abstract Relapsed acute myeloid leukemia (AML) is an aggressive disease with very poor outcomes. Redirection of T-cell specificity via chimeric antigen receptor (CAR) has shown promising anti-tumor activity in clinical trials, particularly for B cell linage malignancies. CD33 is a transmembrane protein expressed on normal and malignant myeloid-derived cells as well (as on subsets of activated T cells and NK cells). Since this protein is commonly expressed on AML cells, we sought to evaluate the efficacy of targeting AML with CD33-specific CAR-T cells. We generated a lentiviral construct to co-express CD33-specific CAR and a kill switch based on a tag derived from the epidermal growth factor receptor. The latter allows for the conditional elimination of CAR-T cells in vivo. Following transduction of primary T cells, we confirmed CAR and kill switch co-expression by flow cytometry and western blot analyses. Elimination of genetically modified T cells was demonstrated using the clinically-available antibody, cetuximab. CD33 CAR-T cells demonstrated specific cytotoxicity to CD33+ target cell lines. CD33 CAR-T cells were also activated to produce IFNg, TNF, and IL-2 cytokines in response to CD33+ target cells. Furthermore, adoptive transfer of CD33 CAR-T in immunocompromised (NSG) mice bearing established CD33+(CD19neg) AML (MOLM-13) tumor resulted in reduction of tumor burden and improvement of overall survival, compared to control mice receiving CD19 CAR-T cells or no immunotherapy (Figure). Sampling of blood demonstrated the persistence of the CD33 CAR-T cells with no detection of AML (MOLM-13) tumor cells. These pre-clinical data demonstrate the effectiveness of CD33 CAR-T cells in targeting CD33+ AML tumor cells and provide a rationale for future clinical evaluation in AML patients with unmet medical need. Disclosures Song: Intrexon Corporation: Employment, Equity Ownership. Swartz:Intrexon Corporation: Employment, Equity Ownership. Biesecker:Intrexon Corporation: Employment, Equity Ownership. Borda:Intrexon Corporation: Employment. Shah:Intrexon Corporation: Employment, Equity Ownership. Wierda:Genentech: Research Funding; Gilead: Research Funding; Abbvie: Research Funding; Novartis: Research Funding; Acerta: Research Funding. Cooper:MD Anderson Cancer Center: Employment; Intrexon: Equity Ownership; Sangamo BioSciences: Patents & Royalties; Targazyme,Inc.,: Equity Ownership; City of Hope: Patents & Royalties; ZIOPHARM Oncology: Employment, Equity Ownership, Patents & Royalties; Miltenyi Biotec: Honoraria; Immatics: Equity Ownership. Chan:Intrexon Corporation: Employment, Equity Ownership.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4794-4794
Author(s):  
Ebtesam Nafie ◽  
Mathias Oelke ◽  
Melissa Valerio ◽  
Sojung Kim ◽  
Ivan Rodriguez ◽  
...  

Abstract Introduction Acute myeloid leukemia (AML), the most common acute leukemia in adults, is characterized by uncontrolled proliferation of immuature myeloid cells. Despite newly approved drugs, AML remains largely incurable due to the persistence of the leukemia stem cell (LSC) population which lie quiescent in the bone marrow niche. Immunotherapy has potential to eradicate LSCs, however, no unique LSC immunophenotype has been identified. Moreover, it is necessary to simultaneously target multiple antigens (Ags) to prevent immune escape and to overcome refractory disease. We present in vitro studies in support of a therapeutic platform capable of targeting multiple intracellular Ags which could meet this challenge. The adoptive transfer of activated T cells primed to engage diverse AML associated epitopes by ex vivo exposure to artificial Ag presenting cells (aAPC) has the potential to eliminate both primary leukemia blasts and LSCs. Hypothesis Ex vivo enrichment and expansion (E+E) of antigen-educated CD8+ T cells recognizing 5 peptides derived from 3 proteins, Cyclin A1, PRAME and WT1, can selectively identify, engage, and kill AML cell lines or patient-derived (PD) AML blasts in a HLA A*02:01 restricted manner in vitro. Materials and Methods T cells from the peripheral blood mononuclear cell fraction of a healthy HLA A*02:01 donor were enriched for antigen-educated CD8+/CD4 -T cells. These cells were cultured with nanoparticles decorated with the 5 peptides and a costimulatory protein, resulting in the activation and expansion of those T cells expressing the cognate T cell receptors. These cells are composed of ~97% abT cells, 3% gdT cells and ~13% T scm, 41.5% T cm, 39.5%T em, 6%T emra and 1% T n. Results Ex vivo expanded educated T cells exhibit target-specific anti-AML activity. T cell mediated cell apoptosis of HLA-matched THP1 cells is dose and time-dependent. At 10:1 effector to target (E:T) ratio, ~28% apoptosis occurred at 24 hrs, while apoptosis was at basal levels when antigen non-educated T cells were used (data not shown). Studies were extended to PD AML cells (Fig. 1A: 012; Fig. 1B: 415) where antigen educated T cells elicited rapid (<16 hrs) and extensive (~90%) apoptosis of target PD AML cells at all E:T ratios examined. Time lapse photography of T cell/PD AML incubations revealed antigen-educated T cells clustered around AML cells (Fig. 2A), a fraction of the latter disappearing over the course of 12 hrs while PD AML cells incubated with non-educated T cells (Fig. 2B) remained viable over 12 hrs. Furthermore, there is little or no T cell movement or clustering in the wells with unprimed, non-active T cells. Release of IFN-γ by educated T cells. T cells (Fig.3A: antigen-educated through E+E) were incubated at E:T::5:1 for 24 to 48 hrs and IFN-γ in supernatants measured. The fold difference over non-educated T cells incubated with AML cells for the same time is shown and can reach over 5-fold. IFN-γ accumulation was time-dependent where antigen-educated T cells were combined with HLA-A2 matched THP1 or PD AML cells (012, 415, 470). Educated T cells were not active against target cells lacking HLA-A2 (K562) demonstrating HLA restricted killing (Fig. 3B). Additionally, antigen-educated T cells incubated without any target released slightly more IFN-γ than non-educated T cells under similar conditions but AML cells fail to stimulate IFN-γ release from non-educated T cells (data not shown). Conclusions We demonstrate HLA restricted cytotoxic activity of antigen-educated T cells against THP1 AML cells and PD AML blasts as shown by flow cytometry and microscopy. Consistent with target cell death, the supernatants from assays with antigen-educated T cells and HLA A*02:01 AML target cells exhibited over 5-fold more IFN-γ than media from assays of non-educated cells under identical conditions. Under these in vitro conditions, PD AML blasts were more readily killed than THP1 cells perhaps due to higher target antigen density (data not shown). These results support the use of multi-antigen-educated T cells for adoptive transfer to treat AML. To investigate the safety and establish the recommended phase II dose, a multi-center Phase I clinical study is underway in relapsed AML post-allo-HCT (NCT 04284228). Future studies will incorporate new antigens to enable broader targeting of a heterogeneous population of AML within and across patients Figure 1 Figure 1. Disclosures Oelke: Neximmune, Inc: Current Employment. Kim: Neximmune, Inc: Current Employment. Marcucci: Agios: Other: Speaker and advisory scientific board meetings; Novartis: Other: Speaker and advisory scientific board meetings; Abbvie: Other: Speaker and advisory scientific board meetings. Al Malki: Jazz Pharmaceuticals, Inc.: Consultancy; Hansa Biopharma: Consultancy; Neximmune: Consultancy; CareDx: Consultancy; Rigel Pharma: Consultancy.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2028-2028
Author(s):  
Francesco Manfredi ◽  
Maddalena Noviello ◽  
Eliana Ruggiero ◽  
Tommaso Perini ◽  
Giacomo Oliveira ◽  
...  

Abstract Background. Allogeneic Hematopoietic Stem Cell Transplantation (HSCT) is the only cure for high-risk acute myeloid leukemia (AML); nonetheless, relapse remains the major cause of death after such therapeutic option. Patients and Methods . We investigated the expression of Inhibitory Receptors (IR; i.e. PD-1, CTLA-4, TIM-3, LAG-3 and KLRG1) on different T-cell subsets infiltrating the bone marrow (BM) of 8 healthy donors (HD) and 32 allogeneic HSCT recipients diagnosed with Acute Myeloid Leukemia, collected at relapse (median 251 days) or at complete remission (CR) 1 year after HSCT. Inclusion criteria were: a diagnosis of acute myeloid leukemia or myelodysplastic syndrome, a relapse-free survival of at least 4 months after allogenein HSCT, absence of active GvHD, CMV infections or other complications at the time of sampling. Samples were analysed by multi-parametric flow cytometry for the expression of inhibitory receptors on T-cell subsets and the results were validated with BH-SNE, an unbiased dimensionality reduction algorithm. We exploited HLA-mimicking fluorescent molecules loaded with a specific epitope to screen anti-tumour and anti-viral T cells whereas the T-cell receptor repertoire was assessed by TRAC and TRBC RNA sequencing and the relative frequency of each T-cell receptor calculated. To evaluate T-cell function and specificity, CD107a expression, cytokine profiles and killing of autologous blasts were quantified. Results. After Haploidentical-HSCT PD-1, CTLA-4, 2B4 and Tim-3 were expressed at higher percentage when compared to HD, independently from the clinical outcome. In contrast, after HLA-matched HSCT, patients who relapsed displayed a higher frequency of BM-infiltrating T cells expressing PD-1, CTLA-4 and Tim-3 than CR pts (p<0.05) or HD samples (p<0.01). These data were validated by BH-SNE, who retrieved 32 clusters associated with relapse and composed of T cells co-expressing multiple IRs at high fluorescence, indicating a dominant inhibitory T-cell profile in the BM of relapsing patients. To further corroborate the biological relevance of immune checkpoints in the context of post-transplant relapse we typed AML cells, detecting high levels of the IRs ligands PD-L1, CD48, Galectin-9 and CD80/86 on blasts. To gain insights on the inhibited T-cell subpopulation identified in the BM of relapsing patients, we separately profiled the different T-cell memory subsets: in both HD and CR patients the IR expression was confined to effector memory and effectors whereas at relapse PD-1, 2B4, KLRG1 and Tim-3 were also expressed in BM-infiltrating central memory (TCM) and memory stem T cells (TSCM, p<0.01), thus indicating a pervasive and profound immune suppression that specifically involved the memory T-cell compartment. In accordance to this exhausted phenotype, we observed that BM CD8 T cells at relapse displayed lower degranulation ability and IL-2 production compared to CR (p<0.05). Notably, this functional impairment could be reversed by in vitro culture with high doses of IL-2. Interestingly, the TCR repertoire of BM-infiltrating T cells at relapse displayed a restricted clonality, suggesting that immune inhibitory signals are active on discrete and specific T-cell clones. To gain further insights on such clones, we assessed the IR expression profile on CD8 T cells specific for viral (CMV) and tumor-associated antigens (including peptides from WT1, EZH2 and PRAME). We observed a higher IR expression and co-expression on tumor-specific T cells when compared to viral-specific CD8 cells, particularly in case of patients who experienced post-transplant relapse. In accordance, IRpos sorted T cells harvested from relapsing patients showed a restricted TCR repertoire and, when challenged with autologous leukemic blasts, proved enriched in leukemic specificities as shown by higher expression of the activation marker HLA-DR (p<0.05), higher granzyme A and B production (p<0.001) and higher blast lysis in cytotoxicity assays (p<0.05) when compared to IRneg T cells. Conclusion. These results highlight a wide, yet reversible, immunological dysfunction likely mediated by AML blasts in the BM of patients relapsing after allogeneic HSCT, that is particularly evident on memory T cells specific for tumor antigens. This suggest and open new therapeutic opportunities for AML. Figure. Figure. Disclosures Bondanza: Novartis: Employment. Vago:GENDX: Research Funding; Moderna TX: Research Funding. Bonini:Intellia Therapeutics: Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1116-1116 ◽  
Author(s):  
Roman Galetto ◽  
Celine Lebuhotel ◽  
Agnes Gouble ◽  
Cecile Schiffer-Mannioui ◽  
Julianne Smith

Abstract Adoptive immunotherapy using autologous T-cells endowed with chimeric antigen receptors (CARs) has emerged as a promising new approach to treating cancer. However, a limitation of this approach is that CAR T-cells must be generated on a bespoke basis. To overcome this limitation, we have developed an allogeneic based platform for large scale production of “off-the-shelf” CAR T-cells from unrelated 3rd party donors. This platform utilizes Transcription Activator-Like Effector Nuclease (TALENTM) gene editing technology to inactivate the TCRα constant (TRAC) gene, eliminating the potential for T-cells bearing alloreactive TCR’s to mediate Graft versus Host Disease (GvHD). We have previously demonstrated that editing of the TRAC gene can be achieved at high frequencies, obtaining up to 80% of TCRαβ negative cells. This allows us to efficiently produce TCR-deficient T-cells that have been shown to no longer mediate alloreactivity in a xeno-GvHD mouse model. Furthermore, the capacity to perform efficient multiplex genome editing using TALENTM offers the possibility of simultaneously rendering cells resistant to standard chemotherapy or to tumor evasion mechanisms. In this work we present the adaptation of this allogeneic platform to the production of T cells targeting CD123, the transmembrane alpha chain of the interleukin-3 receptor, which is expressed in tumor cells from the majority of patients with Acute Myeloid Leukemia (AML). In a first step, we have screened human primary T-cells harboring CARs with different antigen recognition domains in the context of multiple CAR architectures in order to identify candidates displaying specific activity against cell lines expressing variable levels of the CD123 antigen. To provide proof of concept for the general applicability of the allogeneic approach we have manufactured a TCR-deficient CD123 CAR T-cell (UCART123) and demonstrated that this product maintains a potent anti-tumoral activity in vitro. Experiments in an orthotopic AML mouse model using UCART123 cells are currently ongoing, in order to establish the absence of alloreactivity and the anti-tumoral activity in vivo. The ability to carry out large scale manufacturing of allogeneic, non alloreactive CD123 specific T Cells from a single healthy donor could thus offer the possibility of an off-the-shelf treatment that would be immediately available for administration to a large number of AML patients. Disclosures Galetto: Cellectis SA: Employment. Lebuhotel:Cellectis SA: Employment. Gouble:Cellectis SA: Employment. Schiffer-Mannioui:Cellectis SA: Employment. Smith:Cellectis SA: Employment.


Leukemia ◽  
2021 ◽  
Author(s):  
Rajkumar Ganesan ◽  
Vijaykumar Chennupati ◽  
Balaji Ramachandran ◽  
Michael Riis Hansen ◽  
Sanjaya Singh ◽  
...  

AbstractDespite significant progress over the last few decades in the treatment of acute myeloid leukemia (AML), there still remains a major unmet medical need for this disease. Immunotherapy approaches for redirecting pan CD3+ T cells to target leukemia blasts have shown limited efficacy in clinical trials and often accompanied with severe toxicity in AML patients. We designed an alternative engager molecule (Anti-TRGV9/anti-CD123), a bispecific antibody that can simultaneously bind to the Vγ9 chain of the Vγ9Vδ2+ γδ T cell receptor and to AML target antigen, CD123, to selectively recruit Vγ9+ γδ T cells rather than pan T cells to target AML blasts. Our results suggest that prototypic bispecific antibodies (a) selectively activate Vγ9+ γδ T cells as judged by CD69 and CD25 surface expression, and intracellular Granzyme B expression, (b) selectively recruit Vγ9+ γδ T cells into cell–cell conjugate formation of γδ T cells with tumor cells indicating selective and effective engagement of effector and target tumor cells, and (c) mediate γδ T cell cytotoxicity (in vitro and in vivo) against tumor antigen-expressing cells. Collectively, these findings suggest that selectively redirecting Vγ9+ γδ T cells to target AML blasts has a potential for immunotherapy for AML patients and favors further exploration of this concept.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2544-2544 ◽  
Author(s):  
Siret Tahk ◽  
Saskia Schmitt ◽  
Christian Peter Augsberger ◽  
Binje Vick ◽  
Laia Pascual Ponce ◽  
...  

Background: Despite considerable advances in the development of novel strategies for the treatment of acute myeloid leukemia (AML) the relapse rate is still high with only limited treatment options. Relapse occurs due to the persistence of chemotherapy-resistant leukemic stem cells (LSCs), which re-initiate outgrowth of the disease, highlighting the need of targeting LSCs to improve overall survival. Immunotherapies represent a promising strategy to target chemotherapy-resistant LSCs in AML. LSCs are characterized by the expression of the interleukin-3 receptor α, also known as CD123. CD123 is expressed on AML blasts and LSCs, and shows only a moderate expression on normal hematopoietic stem cells, claiming CD123 as a suitable target antigen (Haubner et al, Leukemia 2019). CD47, known as a marker of self, is also highly expressed on LSCs as immune escape mechanism. CD47 transmits a "don't eat me" signal upon its interaction with the myeloid-specific signal regulatory protein alpha (SIRPα) receptor on macrophages, thus inhibiting phagocytosis. In order to efficiently eliminate LSCs and provide AML patients a possibility for prolonged relapse-free survival, we have designed a bifunctional antibody that specifically targets CD123 and simultaneously blocks CD47. Importantly, our strategy restricts the benefits of the CD47 blockade to CD123 positive AML cells. Thus, we hypothesize a lower risk for on-target off-leukemia toxicity. Methods: The bifunctional SIRPα-CD123 antibody was generated by fusing the endogenous extracellular domain of SIRPα, which functions as the CD47 blocking domain, to an CD123 antibody CD123. We assessed the selective binding of the bifunctional antibody to CD123+CD47+ AML-derived cells and the ability to block CD47 on CD123+ cells in vitro. Furthermore, the biological activity of the SIRPα-CD123 antibody was examined using the AML-derived cell line MOLM-13, patient-derived xenografted (PDX) AML cells as well as primary cells from patients with newly diagnosed or relapsed AML. Results: We engrafted the endogenous SIRPα V-like domain to an antibody targeting CD123, which improved the binding of the bifunctional SIRPα-CD123 antibody to AML cells compared to a conventional CD123 antibody (MFI ratioCD123 = 2.46 0.25 vs MFI ratioSIRPα-CD123 = 4.44 0.60). The SIRPα-CD123 antibody enhanced the elimination of the AML-derived MOLM-13 cells by antibody-dependent cellular cytotoxicity (EC50CD123 = 38.5 pM vs EC50SIRPα-CD123 = 10.1 pM, n = 9). Additionally, the cytotoxicity was confirmed using primary patient-derived AML cells ex vivo. Further, an improved ex vivo cytotoxicity towards AML PDX cells was observed with the SIRPα-CD123 antibody (% lysis at 100 nM: 14.27 5.40 vs 42.94 10.21 for CD123 and SIRPα-CD123 antibodies respectively, n = 3). With regards to the inhibition of CD47 signaling, we were able to show a blockade of CD47 on CD123+CD47+ positive cells by the SIRPα-CD123 antibody. Correspondingly, a significant increase in phagocytosis of primary patient-derived AML cells mediated by monocyte-derived macrophages was observed in allogenic as well as autologous settings (% phagocytosis, normalized to isotype control and maximum phagocytosis in an autologous setting: 20.11 4.59 vs 90.37 6.22, n = 5 for CD123 and SIRPα-CD123 antibodies, respectively). We were further able to show a preferential binding to MOLM-13 in the presence of a 20-fold excess of red blood cells indicating a potential low on-target off-leukemia toxicity. Taken together, our in vitro data supports the elimination of the CD123+CD47+ positive AML LSC compartment by a synergistic effect of avidity-dependent binding to CD123 and CD47 and the simultaneous inhibition of the innate immune CD47-SIRPα signaling pathway. Conclusions: The SIRPα-CD123 is a bifunctional antibody with the potential to deplete CD123+CD47+ AML LSCs by a dual mode of action mechanism resulting in NK cell dependent cytotoxicity and macrophage-mediated phagocytosis. By combining a high affinity binding to CD123+ cells and a low affinity CD47 blockade that is restricted to CD123+ cancer cells we effectively minimize the risk for CD47-related on-target off-leukemia toxicity. The results of our in vitro assays using AML cell lines are consistent with the data from PDX and primary AML samples and support further preclinical testing of the SIRPα-CD123 antibody in vivo. Disclosures Subklewe: Miltenyi: Research Funding; Pfizer: Consultancy, Honoraria; Gilead: Consultancy, Honoraria, Research Funding; AMGEN: Consultancy, Honoraria, Research Funding; Oxford Biotherapeutics: Research Funding; Roche: Consultancy, Research Funding; Celgene: Consultancy, Honoraria; Morphosys: Research Funding; Janssen: Consultancy.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1041-1041
Author(s):  
Julie Gertner-Dardenne ◽  
Eloise Perrot ◽  
Thomas Prebet ◽  
Aude Charbonnier ◽  
Helene Sicard ◽  
...  

Abstract Abstract 1041 Poster Board I-63 BACKGROUNd: Compelling evidences have demonstrated the role of the immune system in the control of acute myeloid leukemia (AML). So far, T cells and natural killer (NK) cells are the major immune effectors shown to be involved in AML control. The graft-versus-leukemia (GVL) effect following allogenic stem cell transplantation as well as donor lymphocyte infusions indicate that T lymphocytes can control and eliminate AML cells. Leukemia-specific antigenic peptides have been characterized (proteinase-3 and Wilms tumor 1 protein) and serve as targets for peptide-based vaccine trials in AML. Allogenic NK cells have anti-leukemic activity as shown by killer cell inhibitory receptor (KIR)-mismatched haplo-identical stem cell transplantation. Less is known regarding the role of gd T cells in the control of AML. Recently the reconstitution of Vd1 T lymphocytes post transplantation has been shown to correlate with a better prognosis. In the present study, we have analyzed gd T cells in patients with AML and in a mouse model of human AML and focused on (Vg9) Vd2 T cells, the main subset of circulating gd T cells with anti-neoplastic activity. Human Vg9Vd2 T lymphocytes can be activated by nonpeptidic antigens such as the mevalonate pathway-derived isopentenyl pyrophosphate or synthetic phosphoantigen such as bromohydrin pyrophosphate (BrHPP). This population may be suitable for the adoptive immunotherapy of acute myeloid leukemia (AML). However little is known about the frequency, the function and the mechanisms underlying Vg9Vd2 T-cell recognition of AML. We have focused this study on AMoL which are targets of NK and ab T cells. OBJECTIVE OF THE STUDY to describe Vg9Vd2 T cells in patients with AML and investigate their ability to induce an effective cytotoxic response against autologous AML blast in vitro and in vivo. EXPERIMENTAL PROCEDURe: We compared the phenotype and the absolute circulating Vg9Vd2 T cell levels in the blood and the bone marrow (BM) in 12 patients with AMoL (FAB AML-M4 and -M5) and 12 healthy volunteers (HV) using multi parametric flow cytometry. All patients and volunteers gave written informed consent. Vg9Vd2 T cells of AML patient were expanded ex vivo using BrHPP or Zoledronic acid plus IL2. The functions of expanded Vg9Vd2 T cells were assessed in vitro by their cytotoxicity against leukemic blasts (CD107a staining, 51Cr assay) and in vivo in immunodeficient mice transplanted with human AML cell line (U937). In these experiments, the ability of adoptively transferred Vg9Vd2 T cells to migrate into BM and improve mice survival was assessed after i.v. infusion of U937 cells into healthy female NOD-SCID, common _-chain knockout mice (NOG mice). Mice were then treated twice i.v. with 40.106 Vg9Vd2 T cells. RESULTs: Vg9Vd2 T lymphocytes are present in the blood as well as BM of AMoL patients at a lower frequency as compared to HV (median 2.07/μl vs 34/μL respectively P<0.001). Vg9Vd2 T lymphocytes from AML patients are endowed with in vitro proliferation in response to BrHPP or Zoledronic acid plus IL2 but lower than HV (fold increase median 33 versus 69, P=0.051). Expanded Vg9Vd2 express activation markers (CD69 and CCR5) and exhibit an effector/memory phenotype (CD45RA- CD27-). Their lytic potential toward autologous AML blast was equivalent to those of HV by 51Cr experiments and CD107a staining and involves the perforin-granzyme pathway. Their activity depends on both TCRVd2 and DNAX accessory molecule-1 (DNAM-1) as demonstrated by antibody blockade. In vivo data show that, upon sacrifice, Vg9Vd2 were detected in BM, spleen and blood of mice. Preliminary Kaplan-Meier analysis of pooled cohorts of Vg9Vd2-treated and untreated mice reveals that mice receiving Vg9Vd2 T cells displayed superior survival compared with untreated controls (P=0.0047). CONCLUSIOn: Altogether, our data indicate that Vg9Vd2 T cells are decreased in AML patients and have a more limited expansion potential. However, they are able to kill autologous AML blast upon stimulation in a TCRVd2 as well as the DNAM-1 receptor dependent manner. These results provide a rationale for the clinical evaluation of adoptive transfer of ex vivo expanded allogenic Vg9Vd2T cells or direct activation of Vg9Vd2T cells with IL2 + phosphoantigens in patients with AML. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document