scholarly journals Targeted Deep Sequencing As a Clinically Effective Approach to Profile the Mutational Landscape in Multiple Myeloma

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 37-38
Author(s):  
Samuel Cutler ◽  
Dan Gaston ◽  
Philipp Knopf ◽  
Andrea Thoni ◽  
Nicholas Allen Forward ◽  
...  

Introduction: Multiple Myeloma (MM) is the second most common hematological malignancy in North America. It is characterized by invasion of the bone marrow by malignant plasma cells. This malignancy presents with a broad range of primary genomic lesions that dichotomize cases into hyperdiploidy or IgH translocated. Less recurrent secondary focal events, including indels and SNPs, are also reported, however, their clinical correlates are poorly described. In this study, we examine the exonic landscape of 26 genes reported to be mutated in >1% of myeloma patients via deep sequencing using a custom panel. We assess a cohort of 76 patients banked in the QEII Myeloma Tumor Bank with detailed clinical correlates and 4 MM cell lines for their mutational profile. Methods: DNA Library preparations were performed from CD138+ cells (76 MM) and 4 MM cell lines according to Illumina TruSeq protocol and sequenced at a depth of 1000x using a custom designed mutation panel. Variants were called by six somatic variant callers and correlates with patient clinical data were assessed. Results: A total of 376 mutations were identified within 63 patients (325) and 4 cell lines (51); no mutations were identified in 13 patients. ATM was the most mutated gene and KRAS had the highest number of mutations per kilobase. Forty three patients harbored 1-4 mutations, 12 patients harbored 5-9, and 8 patients harbored ≥10 mutations. Progression-free survival (PFS) was found to be significantly reduced in patients harboring high-severity mutations (frame shift, splice site, and stop altering mutations) (n =15 HR = 2.85; 95% CI: 1.3-6.35; p = 0.01). We also assessed mutations by the pathogenicity scoring algorithms rfPred, SIFT, MutationTaster, Polyphen2, and FATHMM-FX, as well as SPLICEAI which predicts splicing impacts of mutations. FATHMM-FX was the only algorithm to identify mutations that define a group with significantly altered PFS (n = 5; HR = 6.7; 95% CI: 2.5-18; p < 0.001). We then combined these indicators to define high-risk patients such that a patient is considered high risk if they harbor one or more mutations that are high-severity or predicted by FATHMM-FX to be pathogenic. Of the 376 in our cohort, 23 were high-risk markers, 19 of which were in patient samples. This classified 16 of 76 patients as high risk which had significantly reduced PFS (n = 16; HR = 3.5; 95% CI: 1.6-7.6; p = 0.002) (Fig. 1 A-B). Notably, 2 high risk mutations were found in 3 patients, one of whom had plasma cell leukemia (PCL) and the other progressed to PCL. This group had a markedly reduced PFS (n = 3; HR = 16; 95% CI: 2.9-83; p = 0.001) (Fig. 1 C-D). Additionally, focal copy-number alterations (CNVs) were probed from panel data, and patients harboring 2 or more focal CNVs had significantly reduced PFS (n = 10, HR = 3.2, 95% CI: 1-9.1, p = 0.043). Combining focal CNV and mutation risk identified 24 patients with significantly reduced PFS (HR = 4.2; 95% CI: 1.9-9.1; p < 0.001) (Fig. 1 E-F). Harboring a high-risk mutation or more than one focal CNV was independent of age, ISS stage, Beta-2 microglobulin, serum albumin, LDH, and bone marrow plasma cell burden. Of 48 fluorescent in situhybridization (FISH) assessed patients, 12 had 'high risk' FISH findings, none of whom had severe mutations though 1 harbored two focal CNVs. Of the 36 patients standard-risk by FISH, 12 had high-risk mutations, and 5 had more than one panel identified focal CNV. Combined, these identified 15 high-risk patients in the FISH standard-risk group which had significantly reduced PFS (HR = 3.7; 95% CI: 1.1-12; p = 0.031) (Fig. 1 G-H). Conclusion: Our custom mutation panel demonstrates novel findings that independently redefine prognosis in multiple myeloma in our cohort of Nova Scotian patients. Figure 1 Disclosures Forward: Pfizer: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; AstraZeneca: Membership on an entity's Board of Directors or advisory committees; AbbVie: Membership on an entity's Board of Directors or advisory committees; Calgene: Membership on an entity's Board of Directors or advisory committees; IMV: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Roche: Membership on an entity's Board of Directors or advisory committees; Servier: Membership on an entity's Board of Directors or advisory committees; Astellas: Research Funding; IMV: Research Funding; Merck: Research Funding; Seattle Genetics: Research Funding. White:Karyopharm: Honoraria; Antengene: Honoraria; GSK: Honoraria; Janssen: Honoraria; Celgene: Honoraria; Takeda: Honoraria; Sanofi: Honoraria; Amgen: Honoraria.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2147-2147
Author(s):  
M Hasib Sidiqi ◽  
Mohammed A Aljama ◽  
Angela Dispenzieri ◽  
Eli Muchtar ◽  
Francis K. Buadi ◽  
...  

Abstract We retrospectively reviewed all patients receiving bortezomib, lenalidomide and dexamethasone induction followed by autologous stem cell transplantation (ASCT) within 12 months of diagnosis for multiple myeloma at the Mayo Clinic. 243 patients treated between January 2010 and April of 2017 were included in the study. Median age was 61 (interquartile range, 55-67) with 62% of patients being male. High risk cytogenetic abnormalities (HRA) were present in 34% of patients. 166 (68%) patients received some form of maintenance/other therapy post transplant (no maintenance (NM, n=77), lenalidomide maintenance (LM, n=108), bortezomib maintenance (BM, n=39) and other therapy (OT, n=19)). Overall response rate was 99% with complete response (CR) rate of 42% and 62% at day 100 and time of best response post transplant respectively. The four cohorts categorized by post transplant therapy were well matched for age, gender and ISS stage. HRA were more common amongst patients receiving bortezomib maintenance or other therapy post transplant (NM 18% vs LM 22% vs BM 68% vs OT 79%, p<0.0001). Two year and five year overall survival rates were 90% and 67% respectively with an estimated median overall survival (OS) and progression free survival (PFS) of 96 months and 28 months respectively for the whole cohort. OS was not significantly different when stratified by post-transplant therapy (Median OS 96 months for NM vs not reached for LM vs 62 months for BM vs not reached for OT, p=0.61), however post-transplant therapy was predictive of PFS (median PFS 23 months for NM vs 34 months for LM vs 28 months for BM vs 76 months for OT, p=0.01). High risk cytogenetics was associated with a worse OS but not PFS when compared to patients with standard risk (median OS: not reached for standard risk vs 60 months for HRA, p=0.0006; median PFS: 27 months for standard risk vs 22 months for HRA, p=0.70). In patients that did not receive maintenance therapy presence of HRA was a strong predictor of OS and PFS (median OS: not reached for standard risk vs 36 months for HRA, p<0.0001; median PFS: 24 months for standard risk vs 7 months for HRA, p<0.0001). Patients receiving maintenance therapy appeared to have a similar PFS and OS irrespective of cytogenetics (median OS: not reached for standard risk vs 62 months for HRA, p=0.14; median PFS: 35 months for standard risk vs 34 months for HRA, p=0.79).On multivariable analysis ISS stage III and achieving CR/stringent CR predicted PFS whilst the only independent predictors of OS were presence of HRA and achieving CR/stringent CR. The combination of bortezomib, lenalidomide and dexamethasone followed by ASCT is a highly effective regimen producing deep and durable responses in many patients. Maintenance therapy in this cohort may overcome the poor prognostic impact of high risk cytogenetic abnormalities. Table Table. Disclosures Dispenzieri: Celgene, Takeda, Prothena, Jannsen, Pfizer, Alnylam, GSK: Research Funding. Lacy:Celgene: Research Funding. Dingli:Alexion Pharmaceuticals, Inc.: Other: Participates in the International PNH Registry (for Mayo Clinic, Rochester) for Alexion Pharmaceuticals, Inc.; Millennium Takeda: Research Funding; Millennium Takeda: Research Funding; Alexion Pharmaceuticals, Inc.: Other: Participates in the International PNH Registry (for Mayo Clinic, Rochester) for Alexion Pharmaceuticals, Inc.. Kapoor:Celgene: Research Funding; Takeda: Research Funding. Kumar:KITE: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; AbbVie: Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding. Gertz:Abbvie: Consultancy; Apellis: Consultancy; annexon: Consultancy; Medscape: Consultancy; celgene: Consultancy; Prothena: Honoraria; spectrum: Consultancy, Honoraria; Amgen: Consultancy; janssen: Consultancy; Ionis: Honoraria; Teva: Consultancy; Alnylam: Honoraria; Research to Practice: Consultancy; Physicians Education Resource: Consultancy.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3092-3092 ◽  
Author(s):  
Rowan Kuiper ◽  
Martin van Vliet ◽  
Annemiek Broyl ◽  
Yvonne de Knegt ◽  
Bronno van der Holt ◽  
...  

Abstract Introduction Multiple Myeloma (MM) is a heterogeneous disease with highly variable survival. Gene expression profiling (GEP) classifiers, such as the EMC-92, can consistently distinguish high risk patients from standard risk patients. Other prognostic factors for MM include the international staging system (ISS) and FISH. Here we present a comparison of prognostic factors and introduce a novel stratification based on EMC-92 and ISS. Methods Scores were calculated for the GEP classifiers EMC-92, UAMS-70, UAMS-17, UAMS-80 and MRC-IX-6 for the following five studies: HOVON-65/GMMG-HD4 (n=328; GSE19784), MRC-IX (n=247; GSE15695), UAMS-TT2 (n=345; GSE2658), UAMS-TT3 (n=238; E-TABM-1138 and GSE2658) and APEX (n=264; GSE9782; for details, see Kuiper R, et al. Leukemia (2012) 26: 2406–2413). FISH data were available for the HOVON-65/GMMG-HD4 trial and the MRC-IX trial. ISS values were available for all datasets except UAMS-TT2. Univariate associations between markers and overall survival (OS) were investigated in a Cox regression analysis, using Bonferroni multiple testing correction. For pair wise analysis of markers, the significance in the increase of partial likelihood was calculated. In order to find the strongest combination (defined as the highest partial likelihood) of GEP-ISS, we compared these pair-wise on the same data. Training sets of classifiers were excluded for those analyses in which that specific classifier was tested. All survival models have been stratified for study. The calculations were done in R using the package survival. Results Prognostic value of FISH, GEP and serum markers was determined in relation to overall survival (Figure 1). GEP classifiers generally performed much better than FISH markers. Of 6 FISH markers with known adverse risk, del(17p), t(4;14), t(14;20) and del(13q) demonstrated a significant association only in one of two data sets with available FISH (HOVON-65/GMMG-HD4). GEP classifiers, on the other hand, are much more robust. Classifiers EMC-92, UAMS-70 and UAMS-80 significantly identify a high-risk population in all evaluated data sets, whereas the UAMS-17 and the MRC-IX-6 classifiers predict high-risk patients in three of four datasets. As expected, ISS staging demonstrated stable and significant hazard ratios in most studies (three out of four). Indeed, when evaluating a merged data set, both ISS and all evaluated GEP classifiers are strong prognostic factors independent of each other. Markers with additive value to each other include all combinations of GEP classifiers as well as the combination of GEP classifiers together with ISS. Tested in independent sets, the EMC-92 classifier combined with ISS is the best combination, as compared to other classifier-ISS combinations tested on the same independent data sets. The strongest risk stratification in 3 groups was achieved by splitting the EMC-92 standard risk patients into low risk, based on ISS stage I, and intermediate risk, based on ISS stage II and III. This stratification retains the original EMC-92 high-risk group, and is robust in all cohorts. The proportions of patients defined as low, intermediate and high risk for this combined EMC-92-ISS classifier are 31% / 47% / 22 % (HOVON-65/GMMG-HD4), 19% / 61% / 20 % (MRC-IX), 46% / 39% / 15 % (UAMS-TT3) and 32% / 55% / 13 % (APEX). Variability in low risk proportion is caused by the variable incidence of ISS stage I. Conclusions We conclude that GEP is the strongest predictor for survival in multiple myeloma and far more robust than FISH. Adding ISS to EMC-92 results in the strongest combination of any of the GEP classifier-ISS combinations. Stratification in low risk, intermediate and high risk may result in improved treatment and ultimately in longer survival of MM patients. This research was supported by the Center for Translational Molecular Medicine (BioCHIP project) Disclosures: van Vliet: Skyline Diagnostics: Employment. Mulligan:Millennium Pharmaceuticals: Employment. Morgan:Celgene: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees; Millenium: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees; Novartis: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees; Merck: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees; Johnson and Johnson: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees. Goldschmidt:Celgene: Consultancy, Honoraria, Research Funding; Janssen: Consultancy, Honoraria, Research Funding; Novartis: Consultancy, Honoraria, Research Funding. Lokhorst:Genmab A/S: Consultancy, Research Funding; Celgene: Honoraria; Johnson-Cilag: Honoraria; Mudipharma: Honoraria. van Beers:Skyline Diagnostics: Employment. Sonneveld:Janssen-Cilag: Honoraria; Celgene: Honoraria; Onyx: Honoraria; Janssen-Cilag: Research Funding; Millenium: Research Funding; Onyx: Research Funding; Celgene: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4580-4580 ◽  
Author(s):  
Eduardo Sobejano ◽  
Veronica Gonzalez De La Calle ◽  
Victor Higuero ◽  
Fernando Escalante ◽  
Ramón García-Sanz ◽  
...  

INTRODUCTION The t (11; 14) by fluorescent in situ hybridization (FISH) is found in 15-20% of patients with multiple myeloma (MM) . Although it was classically considered a standard risk translocation or even a good prognosis, recent studies conducted in the era of new drugs show contradictory results and it is not well established if they have to be considered intermediate or standard risk. The possibility of using targeted therapy with venetoclax for patients harboring t(11;14) makes the investigation of the outcome of newly diagnosed multiple myeloma (NDMM) with t(11;14) as relevant. METHODS We analyzed the baseline characteristics and outcome of patients with t(11;14)and receiving HDT-ASCT within the series of 647 patients with NDMM between 1988 and 2018 according to the current criteria at each moment at two academic hospitals in Spain (University Hospital of Salamanca and Hospital of Leon) . The FISH was performed on selected cells according to international regulations and centralized at the University Hospital of Salamanca. For this purpose, a descriptive cross-sectional study was first conducted comparing the characteristics of patients with t (11; 14) versus the rest. The final objective wasto evaluate the role of HDT-ASCT in NDMM with t(11;14). RESULTS The baseline characteristics of the whole series were: a median age of 71years (yrs) (range:30-96). 217 patients (33,5%) were under 65 years. 352 (56.2%) were IgG; 161 (25.7%) IgA; 87 (13.9%) Bence Jones; 19 (3%) non-secretors, and 5 and 2 cases were IgD and IgM, respectively. 320 (53.2%) received novel agents as part of the first line of therapy. Overall, 153 (27.8%) achieved complete response (CR) after first line, and 403 (73.1%) at least a partial response. After a median follow-up for living patients of 4.26 yrs (range: 0,1-27.3), the OS of the entire series was 2.74 years. T(11;14) was performed in 440 NDMM patients and was positive in 80 (18.2%). Only in 5 patients other high-risk alterations (t (14:16), t (4:14) or del17p (p53)) were detected. The baseline characteristics of patients with and without t (11:14) did not show significant differences, except for the heavy chain pattern(p <0,001). IgA was lower in patients with t(11:14) 12,8% (10 out of 78)vs 27,7% (98 out of 353). Of note, most patients with non-secretory MM (10 out of 16, 62,5%) had the t(11;14) whilst in the conventional secretory MM patients, t(11;14) was observed in 68out of 415(16,4%). In addition, the plasma cell bone marrow infiltration was significantly higher in patients with t(11;14)(> 60% Plasma Cells) 32.8% vs 13.3%(p <0.001)). HDT-ASCT was performed in 162 patients (25%)and 22 of them (13,5%) were positive for the t(11:14) and only in 2 patients, other high-risk alterations were detected.The induction therapy received in both treatments arms was homogeneous basically consisted on combinations of proteasome inhibitors plus immunomodulatory drugs. The median OS for NDMM patients undergoing ASCT was 4,33 years. (range: 0,47-26,85) and the median PFS for this patients was 2,25 yrs (range: 0,1-27,25) The median PFS for patients with t (11/14) undergoing ASCT trended to be higher than that observed in patients without t(11;14) who received also HDT-ASCT (99.1 vs 54.9 months), without obtaining significant results, (p 0.205) maybe due to the small number of patients (Figure 1).The median OS in the group of patients with and without t(11:14) undergoing ASCT was 120,8 vs 140 months (p= 0,829). In the cohort of non eligible ASCT patients both median PFS and OS for patients with t(11:14) was similar than that observed in patients without t(11:14)(median PFS of 19,9 vs 19,4 months) (p 0,438) and (median OS of 31,5 vs 44 months) (p 0,424), respectively. CONCLUSION T(11;14) seems to be a cytogenetic abnormality more frequently observed in patients with NDMM and non secretory phenotype what requires further investigation. Patients with t(11;14) benefit the most if they received HDT-ASCT and it would represent a therapeutic strategy of choice if the patient is transplant-eligible. Figure 1 Disclosures Puig: Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Janssen: Consultancy, Honoraria, Research Funding; The Binding Site: Honoraria; Takeda, Amgen: Consultancy, Honoraria. Mateos:Abbvie: Membership on an entity's Board of Directors or advisory committees; GSK: Membership on an entity's Board of Directors or advisory committees; Pharmamar: Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees; Adaptive: Honoraria; EDO: Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1854-1854
Author(s):  
Erik H van Beers ◽  
Martin H. Van Vliet ◽  
Kenneth C. Anderson ◽  
Ajai Chari ◽  
Sundar Jagannath ◽  
...  

Abstract Introduction Multiple Myeloma is not a single disease. There is increasing support for risk classification in combination with treatment decision making because of its impact on clinical outcomes. Here we demonstrate additional evidence of the prognostic value of SKY92, an established genetic marker of high risk Multiple Myeloma in a multicenter collection of samples with undisclosed treatments. Materials Methods A public GEP dataset (MMRC, MMGI portal) contained 114 cases of untreated Multiple Myeloma and was used for SKY92 high risk OS prediction (Kuiper et al. Leukemia 2012). In collaboration with MMRC, OS (with a minimum of at least 2 year follow-up) was collected for 91 of 114 cases for the purpose of this analysis. Briefly, CD138-positive plasma cells had been purified prior to total RNA extraction and subsequent gene expression profiling on Affymetrix U133Plus2.0 GeneChips. The 91 cases represented 9 different clinical sites and their CEL files were normalized as a single batch against a reference cohort of 329 cases after which the SKY92 risk scores were determined as either standard risk or high risk. Results SKY92 resulted in 19 high risk (20.9%) versus 72 standard risk (79.1%) cases in the unselected 91 case-cohort. Comparisons with other high risk GEP signatures will be performed. The OS analysis (Figure 1) shows that the HR cases have significantly shorter survival (Hazard Ratio 11, p = 7 x 10-5). Table 1 shows that high risk patients had more elevated B2M (26.3% vs 13.9%), more low albumin (26.3% vs 16.7%) and more high creatinine (26.3% vs 11.0%). There was no difference between high and standard groups in diagnosis dates (not shown). Cause of the 16 (84.2%) deaths among the high risk cases, and 21 (29.1%) deaths among the standard risk cases indicates that high risk contains less disease progression deaths (57.1% vs 31.3%), and more unknown deaths (56.3% vs 23.8%). Conclusions The SKY92 classifier identified 19 of 91 cases (21%) as high risk, recapitulating the percentage of high risk in previously studied cohorts (Kuiper et al. 2012). Moreover the hazard ratio of 11 when events up to 24 months or 8.18 when all events are considered, emphasizes the unmet medical need of high risk cases identified with SKY92 as 69% of all deaths within 2 years (9/13 death events) were in this category. Acknowledgments This research was performed within the framework of CTMM, the Center for Translational Molecular Medicine, project BioCHIP grant 03O-102. Rafael Fonseca is a Clinical Investigator of the Damon Runyon Cancer Research Fund. This work is supported by grants R01 CA83724, ECOG CA 21115T, Predolin Foundation, Mayo Clinic Cancer Center and the Mayo Foundation. Disclosures: van Beers: Skyline Diagnostics: Employment. Van Vliet:Skyline Diagnostics: Employment. Anderson:celgene: Consultancy; onyx: Consultancy; gilead: Consultancy; sanofi aventis: Consultancy; oncopep: Equity Ownership; acetylon: Equity Ownership. Jagannath:Celgene: Honoraria; Millennium: Honoraria. Jakubowiak:BMS: Consultancy, Membership on an entity’s Board of Directors or advisory committees; Celgene: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees, Speakers Bureau; Millennium: Consultancy, Membership on an entity’s Board of Directors or advisory committees; Onyx: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees, Speakers Bureau. Kumar:Celgene: Clinical Trial Support Other, Membership on an entity’s Board of Directors or advisory committees; Cephalon: Clinical Trial Support, Clinical Trial Support Other; Millennium: Clinical Trial Support, Clinical Trial Support Other, Membership on an entity’s Board of Directors or advisory committees; Novartis: Clinical Trial Support, Clinical Trial Support Other; Onyx: Clinical Trial Support Other, Membership on an entity’s Board of Directors or advisory committees. Lebovic:Celgene: Speakers Bureau; Onyx: Speakers Bureau. Lonial:Millennium: Consultancy; Celgene: Consultancy; Novartis: Consultancy; BMS: Consultancy; Sanofi: Consultancy; Onyx: Consultancy. Reece:Onyx: Honoraria; Novartis: Honoraria; Millennium: Research Funding; Merck: Honoraria, Research Funding; Janssen: Honoraria, Research Funding; Celgene: Honoraria, Research Funding; BMS: Research Funding. Siegel:Celgene: Membership on an entity’s Board of Directors or advisory committees, Speakers Bureau; Millennium: Membership on an entity’s Board of Directors or advisory committees, Speakers Bureau; Onyx: Membership on an entity’s Board of Directors or advisory committees, Speakers Bureau. Vij:Celgene: Honoraria, Research Funding, Speakers Bureau; Millennium: Honoraria, Speakers Bureau; Onyx: Honoraria, Research Funding, Speakers Bureau. Zimmerman:Celgene: Honoraria; Millennium: Honoraria; Onyx: Honoraria. Fonseca:Medtronic: Consultancy; Otsuka: Consultancy; Celgene: Consultancy; Genzyme: Consultancy; BMS: Consultancy; Lilly: Consultancy; Onyx: Consultancy, Research Funding; Binding Site: Consultancy; Millennium: Consultancy; AMGEN: Consultancy; Cylene: Research Funding; Prognostication of MM based on genetic categorization of the disease: Prognostication of MM based on genetic categorization of the disease, Prognostication of MM based on genetic categorization of the disease Patents & Royalties.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1616-1616
Author(s):  
Nisha Joseph ◽  
Kathryn T. Maples ◽  
Kevin Hall ◽  
Vikas A Gupta ◽  
Larry H. Boise ◽  
...  

Abstract Background: Despite significant advances in therapeutic options for multiple myeloma (MM) patients, there is an ongoing need to identify effective treatment strategies in the relapsed space. The efficacy of daratumumab, pomalidomide and dexamethasone (DPD) in relapsed and/or refractory patients has been demonstrated in clinical trials, but there is limited data at first relapse in a real world setting. Here, we present a retrospective analysis utilizing our institutional data of multiple myeloma patients treated with DPD at first relapse at the Winship Cancer Institute of Emory University. Methods: Ninety relapsed and/or refractory myeloma (RRMM) patients were identified who had received only one prior line of therapy and subsequently treated with DPD at first relapse. Dose-adjustments were made based on the treating physician's discretion and patient tolerability. Demographic and outcomes data for the patients were obtained from our IRB approved myeloma database and responses were evaluated per IMWG Uniform Response Criteria. Results: The median age of this cohort was 61.9 years (range, 38-85). Other notable patient characteristics include: M/F 44.4%/55.6%; W/AA/Asian 50%/46.7%/3.3%; ISS I/II/III 28.9%/31.1%/20%; Isotype IgG/IgA/FLC 62.2%/17.8%/16.7%; standard risk/high risk 21.1%/52.2%. High risk disease was defined as the presence of t(4;14), t(14;16), del(17p), and/or complex karyotype. A total of 69 patients (76.7%) underwent autologous stem cell transplant (ASCT) upfront after attaining at least a partial response with induction therapy. The most common induction regimen was RVD (78.9%). 81.1% of patients received maintenance therapy, with 50.5% receiving single-agent lenalidomide maintenance and 72.2% receiving a lenalidomide-based maintenance regimen (RVD: 8 pts; Rd: 4 pts; IRD: 7 pts, KRD: 1 pt). With a median follow up of 72 months, the median OS from diagnosis was 158.6 months (95% CI 126.7-190.5) for the entire cohort. The median PFS from time of initiation of DPD was 15.6 months (95% CI 9.9-21.2), and the median OS from time of initiation of DPD was 41.3 months. For high risk vs standard risk patients, the mPFS from time of initiation of DPD was 7.2 months (95% CI 3.6-10.7) vs 17.6 months (95% CI 10.9-24.3), respectively. Median PFS2 in patients &lt;2 years and &gt;2 years from transplant was 8.6 months vs NR, respectively. Conclusions: These results illustrate the activity of DPD at first relapse in a predominantly len-refractory RRMM cohort of patients with impressive long-term outcomes. This benefit was particularly demonstrated in patients with time to relapse of &gt;2 years post-transplant. Figure 1 Figure 1. Disclosures Joseph: GSK: Honoraria; BMS: Research Funding; Takeda: Research Funding; Karyopharm: Honoraria. Boise: AstraZeneca: Honoraria, Research Funding; AbbVie/Genentech: Membership on an entity's Board of Directors or advisory committees. Hofmeister: BlueBird Bio: Other: Non-CME speaker; Aptitude Health: Other: Non-pharma speaker for education, research, marketing; Verascity: Other: Non-pharma speaker for education, research, marketing; TRM Oncology: Other: Non-pharma speaker for education, research, marketing; DAVA Oncology: Other: Non-pharma speaker for education, research, marketing; Medscape: Other: Non-pharma speaker for education, research, marketing; Amgen: Other: Non-CME speaker; BMS: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Philips Gilmore: Other: CME speaker; Non-pharma speaker for education, research, marketing; BioAscend: Other: CME speaker; Imbrium: Membership on an entity's Board of Directors or advisory committees; Myeloma360: Membership on an entity's Board of Directors or advisory committees; Genzyme: Membership on an entity's Board of Directors or advisory committees; Takeda: Other: Local PI of CST; Oncolytics: Other: National PI for CST; PI or co-PI IST; Oncopeptides: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees, Other: Local PI of CST; Janssen: Membership on an entity's Board of Directors or advisory committees, Other: Local PI of CST; Nektar Therapeutics: Membership on an entity's Board of Directors or advisory committees, Other: Local PI of CST; BMS/Celgene: Other: National PI for CST; PI or co-PI IST; Local PI of CST; Sanofi: Other: National PI for CST; PI or co-PI IST; Ohio State University: Current Employment, Current holder of individual stocks in a privately-held company, Current holder of stock options in a privately-held company, Membership on an entity's Board of Directors or advisory committees, Other: IP rights, Patents & Royalties. Kaufman: Incyte, TG Therapeutics: Membership on an entity's Board of Directors or advisory committees; Sutro, Takeda: Research Funding; Roche/Genetech, Tecnopharma: Consultancy, Honoraria; Fortis Therapeutics: Research Funding; Heidelberg Pharma: Research Funding; BMS: Consultancy, Research Funding; Amgen: Research Funding; Tecnofarma SAS, AbbVie: Honoraria; Incyte, celgene: Consultancy; Janssen: Honoraria; Novartis: Research Funding; Genentech, AbbVie, Janssen: Consultancy, Research Funding. Lonial: Abbvie: Consultancy, Honoraria; Janssen: Consultancy, Honoraria, Research Funding; TG Therapeutics: Membership on an entity's Board of Directors or advisory committees; Takeda: Consultancy, Honoraria, Research Funding; BMS/Celgene: Consultancy, Honoraria, Research Funding; GlaxoSmithKline: Consultancy, Honoraria, Research Funding; Merck: Honoraria; AMGEN: Consultancy, Honoraria. Nooka: GlaxoSmithKline: Consultancy, Other: Travel expenses; Amgen: Consultancy, Research Funding; Oncopeptides: Consultancy; Janssen Oncology: Consultancy, Research Funding; Sanofi: Consultancy; Karyopharm Therapeutics: Consultancy; Takeda: Consultancy, Research Funding; Bristol-Myers Squibb: Consultancy; Adaptive technologies: Consultancy.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4607-4607
Author(s):  
Neeraj Y Saini ◽  
Ankur Varma ◽  
Junsheng Ma ◽  
Denái R. Milton ◽  
Romil Patel ◽  
...  

Abstract Abstract: Background: The translocation t(11;14)(q13;q32) is the most common chromosomal translocation in multiple myeloma (MM) with a reported frequency of 15-20%. Most, but not all, reports in the literature have identified this translocation with a relatively favorable outcome. In a smaller cohort, we had previously reported the impact of t(11;14) on the outcomes of MM patients who underwent autologous hematopoietic transplantation (auto-HCT) at our institution1. In this study, we present an updated analysis with a larger cohort of t(11;14) patients, and compared their outcomes to a propensity-matched control group of MM patients with normal diploid cytogenetics and no high-risk abnormalities detected by Fluorescence in Situ Hybridization (FISH). Methods and patients: A total of 1365 MM patients underwent auto-HCT at our institution from 2007 to 2015. We identified 95 patients with t(11;14) by FISH before auto-HCT. Out of these 95 patients, 44 had t(11;14) alone, 26 had co-existent high-risk abnormalities and remaining 25 had standard-risk abnormalities. The control group included 287 MM patients with normal diploid cytogenetics and no abnormalities detected by FISH. From the above two cohorts, using a 1:1 propensity score-matched analysis without replacement, we identified matched controls for 79 patients with t(11;14). Clinical response, relapse, and progression were defined by the International Myeloma Working group criteria. The FISH technique was performed using a LSI IGH/CCND1 XT dual color, dual fusion translocation probe from Abbott Molecular, Inc. The normal cut off for IGH/MYEOV/CCND1 rearrangement using LSI IGH/CCND1 XT probe established at 95 (P<0.05) confidence level in the our Cytogenetics Laboratory is 0.4% for 1R1G2F; 1.1% for 2R2G1F; 3.4% for 3R2G; 7.4% for 2R3G and 0% for 1R3F signal patterns. Results: Table 1 includes the baseline characteristics of the matched doublets. Patients in both groups were well matched for age, ISS stage, serum creatinine, response to induction therapy, induction and preparative regimens, and maintenance therapy. The median follow-up time for the cohort was 48.1 months (range: 0.8-124.6). The overall response rate (CR+VGPR+PR) after auto-HCT was 77/79 (97%) and 78/79 (99%) patients in the t(11;14) and the control group, respectively (P = 1.00). Twenty eight (35%) and 37 (47%) patients achieved a CR in the t(11;14) and the control group, respectively. VGPR rate in the t(11;14) and the control group was 35 (44%) and 31 (39%), respectively. The median PFS for the t(11;14) and the control groups were 33.3 (95%CI: 25.8-not reached) and 39.7 (95%CI: 36.6-not reached) months, respectively (p = 0.24, stratified log-rank test). The median OS has not been reached for both groups (p=0.35). The 4-year PFS rates in the t(11;14) and the control groups were 42% (95%CI: 31%-57%) and 50% (95%CI: 38%-65%), respectively (Fig. A). The 4-year OS rates in the t(11;14) and the control groups were 76% (95%CI: 65%-90%) and 87% (95%CI: 79%-97%), respectively (Fig. B). Conclusions: On a propensity score matching analysis, multiple myeloma patients with translocation t(11;14) had similar response rates, PFS and OS to auto-HCT as standard-risk patients with normal cytogenetics or FISH studies. References: Qazilbash MH et.al. Impact of t(11;14)(q13;q32) on the outcome of autologous hematopoietic cell transplantation in multiple myeloma. Biol Bone Marrow Transplant 2013 Aug;19(8):1227-32. Disclosures Shpall: Affirmed GmbH: Research Funding. Thomas:Celgene: Research Funding; Acerta Pharma: Research Funding; Array Pharma: Research Funding; Amgen Inc: Research Funding; Bristol Myers Squibb Inc.: Research Funding. Lee:Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees; Adaptive Biotechnologies Corporation: Consultancy; Amgen: Consultancy, Membership on an entity's Board of Directors or advisory committees; Chugai Biopharmaceuticals: Consultancy; Takeda Oncology: Consultancy, Membership on an entity's Board of Directors or advisory committees; Kite Pharma: Consultancy, Membership on an entity's Board of Directors or advisory committees. Patel:Poseida Therapeutics, Inc.: Research Funding; Takeda: Research Funding; Abbvie: Research Funding; Celgene: Research Funding. Orlowski:Sanofi-Aventis: Consultancy; Kite Pharma: Consultancy; Janssen: Consultancy; Bristol-Myers Squibb: Consultancy; Celgene: Consultancy; Spectrum Pharma: Research Funding; Takeda: Consultancy; BioTheryX: Research Funding; Amgen: Consultancy, Research Funding. Champlin:Otsuka: Research Funding; Sanofi: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3851-3851
Author(s):  
Jorge Cortes ◽  
Hagop M. Kantarjian ◽  
Tapan M. Kadia ◽  
Guillermo Garcia-Manero ◽  
Elias Jabbour ◽  
...  

Background: The combination of all-trans-retinoic acid (ATRA) and arsenic trioxide (ATO) is superior to ATRA plus chemotherapy in the treatment of standard risk patients (pts) with newly diagnosed APL. MRD monitoring has been successfully utilized for the early identification of relapse. Qualitative PCR has been superseded with the more accurate real-time quantitative PCR (RQ-PCR) for MRD detection in APL. Methods: We reviewed pts with newly diagnosed APL treated at our institution on 3 consecutive prospective clinical trials, using the combination of ATRA and ATO, with or without gemtuzumab ozogamicin (GO). GO was given to High risk pts (WBC >10 × 109/L) and pts with rising WBC. Real-time quantitative RT-PCR (RQ-PCR) was used to measure PML-RARα in bone marrow (BM) and peripheral blood (PB) specimens. We sought to determine the value of MRD monitoring in patients with APL treated with this regimen. Results: A total of 223 pts with APL have been followed from July 2002 to March 2019 with a total of 2007 samples (1622 BM, 385 PB) analyzed with a median number of samples of 8 per pt (range, 1-43). Median follow up is 55.6 months (range, 1-198). MRD positivity decreased over time on therapy; 218 pts (98%) were MRD positive after induction, while only 2 pts (1%) were positive after the first cycle of consolidation. Eight pts (3.5%) had positive MRD (all ≤0.1) during consolidation or after completing treatment but became negative after repeated MRD testing and none of them relapsed. Overall, seven pts relapsed (5 with high risk disease and 2 with low risk) and The median time to relapse after achieving CR was 9.4 months (range, 7.9-79.5).The time to the first relapse was between 7.9-12.4 months except for the pt who relapsed after 79.5 months (low risk pt), Among the high risk pts, molecular relapse preceded hematological relapse by 3.7 weeks (range, 2.1-4.1). There was a correlation between quantitative PCR values on PB and BM samples obtained concomitantly (r2=0.67, p=0.048). Conclusions: MRD monitoring may be useful for early detection of relapse in pts with high risk APL within first year after completion of therapy. Late molecular relapse is very rare and does not justify universal monitoring especially in standard risk patients. These data support the lack of need for MRD monitoring after completion of consolidation in pts with standard risk APL treated with ATRA plus ATO. Table Disclosures Kantarjian: Novartis: Research Funding; Takeda: Honoraria; Agios: Honoraria, Research Funding; Ariad: Research Funding; Daiichi-Sankyo: Research Funding; Cyclacel: Research Funding; Actinium: Honoraria, Membership on an entity's Board of Directors or advisory committees; Pfizer: Honoraria, Research Funding; Immunogen: Research Funding; BMS: Research Funding; Astex: Research Funding; AbbVie: Honoraria, Research Funding; Amgen: Honoraria, Research Funding; Jazz Pharma: Research Funding. Kadia:Celgene: Research Funding; Jazz: Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Research Funding; Bioline RX: Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees; Pharmacyclics: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees, Research Funding; AbbVie: Consultancy, Research Funding; Pfizer: Membership on an entity's Board of Directors or advisory committees, Research Funding; Genentech: Membership on an entity's Board of Directors or advisory committees. Garcia-Manero:Merck: Research Funding; Amphivena: Consultancy, Research Funding; Helsinn: Research Funding; Novartis: Research Funding; AbbVie: Research Funding; Celgene: Consultancy, Research Funding; Astex: Consultancy, Research Funding; Onconova: Research Funding; H3 Biomedicine: Research Funding. Jabbour:BMS: Consultancy, Research Funding; Adaptive: Consultancy, Research Funding; Amgen: Consultancy, Research Funding; AbbVie: Consultancy, Research Funding; Pfizer: Consultancy, Research Funding; Cyclacel LTD: Research Funding; Takeda: Consultancy, Research Funding. Borthakur:Incyte: Research Funding; Merck: Research Funding; Strategia Therapeutics: Research Funding; Janssen: Research Funding; GSK: Research Funding; Agensys: Research Funding; Oncoceutics, Inc.: Research Funding; Argenx: Membership on an entity's Board of Directors or advisory committees; Novartis: Research Funding; BioTheryX: Membership on an entity's Board of Directors or advisory committees; AbbVie: Research Funding; Eli Lilly and Co.: Research Funding; BMS: Research Funding; Polaris: Research Funding; NKarta: Consultancy; FTC Therapeutics: Membership on an entity's Board of Directors or advisory committees; Xbiotech USA: Research Funding; Arvinas: Research Funding; PTC Therapeutics: Consultancy; Cantargia AB: Research Funding; Tetralogic Pharmaceuticals: Research Funding; Eisai: Research Funding; AstraZeneca: Research Funding; Cyclacel: Research Funding; BioLine Rx: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bayer Healthcare AG: Research Funding; Oncoceutics: Research Funding. Short:Takeda Oncology: Consultancy, Research Funding; AstraZeneca: Consultancy; Amgen: Honoraria. Alvarado:Jazz Pharmaceuticals: Research Funding; Abbott: Honoraria. Daver:Karyopharm: Consultancy, Research Funding; Abbvie: Consultancy, Research Funding; Genentech: Consultancy, Research Funding; Pfizer: Consultancy, Research Funding; Servier: Research Funding; Daiichi Sankyo: Consultancy, Research Funding; Astellas: Consultancy; BMS: Consultancy, Research Funding; Immunogen: Consultancy, Research Funding; Forty-Seven: Consultancy; Agios: Consultancy; Hanmi Pharm Co., Ltd.: Research Funding; Celgene: Consultancy; Glycomimetics: Research Funding; Otsuka: Consultancy; NOHLA: Research Funding; Sunesis: Consultancy, Research Funding; Incyte: Consultancy, Research Funding; Jazz: Consultancy; Novartis: Consultancy, Research Funding. Cortes:Novartis: Consultancy, Honoraria, Research Funding; Merus: Consultancy, Honoraria, Research Funding; Forma Therapeutics: Consultancy, Honoraria, Research Funding; Jazz Pharmaceuticals: Consultancy, Research Funding; BiolineRx: Consultancy; Immunogen: Consultancy, Honoraria, Research Funding; Daiichi Sankyo: Consultancy, Honoraria, Research Funding; Pfizer: Consultancy, Honoraria, Research Funding; Sun Pharma: Research Funding; Biopath Holdings: Consultancy, Honoraria; Bristol-Myers Squibb: Consultancy, Research Funding; Takeda: Consultancy, Research Funding; Astellas Pharma: Consultancy, Honoraria, Research Funding. Ravandi:Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Selvita: Research Funding; Xencor: Consultancy, Research Funding; Macrogenix: Consultancy, Research Funding; Menarini Ricerche: Research Funding; Cyclacel LTD: Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3069-3069 ◽  
Author(s):  
Antonio Palumbo ◽  
Federica Cavallo ◽  
Izhar Hardan ◽  
Barbara Lupo ◽  
Valter Redoglia ◽  
...  

Abstract Abstract 3069FN2 Background: High-dose chemotherapy with haemopoietic stem-cell improves outcome in multiple myeloma (MM). The introduction of novel agents questions the role of autologous stem-cell transplantation (ASCT) in MM patients. Aims: In this prospective randomized study, we compared conventional melphalan-prednisone-lenalidomide (MPR) with tandem high-dose melphalan (MEL200) in newly diagnosed MM patients younger than 65 years. Methods: All patients (N=402) received four 28-day cycles of lenalidomide (25 mg, d1-21) and low-dose dexamethasone (40 mg, d1, 8, 15, 22) (Rd) as induction. As consolidation, patients were randomized to MPR (N=202) consisting of six 28-day cycles of melphalan (0.18 mg/kg d1-4), prednisone (2 mg/kg d1-4) and lenalidomide (10 mg d1-21); or tandem melphalan 200 mg/m2 MEL200 (N=200) with stem-cell support. All patients enrolled were stratified according to International Staging System (stages 1 and 2 vs. stage 3) and age (<60 vs. ≥60 years). Progression-free survival (PFS) was the primary end point. Data were analyzed in intention-to-treat. Results: Response rates were similar: at least very good partial response (≥VGPR) rate was 60% with MPR vs. 58% with MEL200 (p=.24); the complete response (CR) rate was 20% with MPR vs. 25% with MEL200 (p=.49). After a median follow-up of 26 months, the 2-year PFS was 54% in MPR and 73% in MEL200 (HR=0.51, p<.001). The 2-year overall survival (OS) was similar in the two groups: 87% with MPR and 90% with MEL200 (HR 0.68, p=.19). In a subgroup analysis, MEL200 significantly prolonged PFS in both standard-risk patients without t(4;14) or t(14;16) or del17p abnormalities (2-year PFS was 46% in the MPR group vs. 78% in the MEL200 group, HR=0.57, p=.007) and high-risk patients with t(4;14) or t(14;16) or del17p abnormalities (2-year PFS was 27% for MPR vs. 71% for MEL200, HR=0.32, p=.004). In patients who achieved CR, the 2-year PFS was 66% for MPR vs. 87% for MEL200 (HR 0.26; p<.001); in those who achieved a partial response (PR), the 2-year PFS was 56% for MPR vs. 77% for MEL200 (HR 0.45; p<.001). In the MPR and MEL200 groups, G3-4 neutropenia was 55% vs. 89% (p<.001); G3-4 infections were 0% vs. 17% (p<.001); G3-4 gastrointestinal toxicity was 0% vs. 21% (p<.001); the incidence of second tumors was 0.5% in MPR patients and 1.5% in MEL200 patients (p=.12). Deep vein thrombosis rate was 2.44% with MPR vs. 1.13% with MEL200 (p=.43). Conclusions: PFS was significantly prolonged in the MEL200 group compared to MPR. This benefit was maintained in the subgroup of patients with standard- or high-risk cytogenetic features. Toxicities were significantly higher in the MEL200 group. This is the first report showing a PFS advantage for ASCT in comparison with conventional therapies including novel agents. These data will be updated at the meeting. Disclosures: Palumbo: celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees. Cavallo:Celgene: Honoraria; Janssen-Cilag: Honoraria. Cavo:celgene: Honoraria. Ria:celgene: Consultancy. Caravita Di Toritto:Celgene: Honoraria, Research Funding. Di Raimondo:celgene: Honoraria. Boccadoro:celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3294-3294 ◽  
Author(s):  
Nisha Joseph ◽  
Vikas A. Gupta ◽  
Craig C Hofmeister ◽  
Charise Gleason ◽  
Leonard Heffner ◽  
...  

Abstract Background : Lenalidomide, bortezomib and dexamethasone (RVD) has been shown to be a well-tolerated and efficacious induction regimen in newly diagnosed myeloma patients. Two large randomized phase III trials show an overall response rate (ORR) >95% (Durie et al, Attal et al) supporting this combination regimen. We have conducted a retrospective analysis utilizing our institutional data of 1000 patients treated with RVD induction therapy at the Winship Cancer Institute of Emory University. Methods: 1000 newly diagnosed MM patients were treated with RVD induction therapy [R - 25 mg/day (days 1-14), V - 1.3 mg/m2 (days 1, 4 8, 11) and D - 40 mg once/twice weekly as tolerated every 21 days] from January 1st 2005 until August 31st 2016. Dose-adjustments were made based on the treating physician's discretion and patient tolerability. Demographic and outcomes data for the patients were obtained from our IRB approved myeloma database and responses were evaluated per IMWG Uniform Response Criteria. Results: The median age of this cohort was 61 years (range 16-83). Other notable patient characteristics include: M/F 54.3%/45.6%; W/AA 56.4%/34%; ISS I and II/III 54%/17%; Isotype IgG/IgA/FLC 59.1%/19%/15.8%; standard risk/high risk 72%/28%. High risk disease was defined as the presence of t(4;14), t(14;16), del(17p), and/or complex karyotype. A total of 835 patients (83.5%) underwent autologous stem cell transplant (ASCT) upfront after attaining at least a partial response with induction therapy, and 165 patients (16.5%) were offered deferred transplant. Among the patients that opted for deferred transplant, 56 of these patients (33.9%) underwent ASCT at first relapse with a median time to transplant of 30 months (3-96). 755 (75.5%) of patients received risk-stratified maintenance therapy following transplant. Evaluation of responses to induction therapy for the entire cohort show an ORR 97.3% with ≥VGPR of 68% post-induction therapy. Response rates 100 days post-transplant show an ORR 98% with 30.7% of patients achieving a sCR. Response rates are summarized in table 1. Median PFS was 63 months for the entire cohort, and 72 months for standard risk patients (61.75-82.25) versus 37 months for the high-risk patients (30.84-43.16), p<0.001. Median OS has not been reached at median of 38 months follow up (Figure 1). Conclusions: This is the largest reported cohort of myeloma patients treated with RVD induction. These results illustrate both the activity of this induction regimen with impressive response rates and long-term outcomes in both standard and high risk patients. Disclosures Hofmeister: Adaptive biotechnologies: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Oncopeptides: Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees. Heffner:ADC Therapeutics: Research Funding; Kite Pharma: Research Funding; Genentech: Research Funding; Pharmacyclics: Research Funding. Boise:AstraZeneca: Honoraria; Abbvie: Consultancy. Kaufman:BMS: Consultancy; Karyopharm: Other: data monitoring committee; Abbvie: Consultancy; Janssen: Consultancy; Roche: Consultancy. Lonial:Amgen: Research Funding. Nooka:GSK: Consultancy, Membership on an entity's Board of Directors or advisory committees; Adaptive technologies: Consultancy, Membership on an entity's Board of Directors or advisory committees; Amgen: Consultancy, Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees; Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees; Janssen pharmaceuticals: Consultancy, Membership on an entity's Board of Directors or advisory committees; Spectrum Pharmaceuticals: Consultancy, Membership on an entity's Board of Directors or advisory committees; BMS: Consultancy, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3240-3240
Author(s):  
Roberto Mina ◽  
Alessandra Larocca ◽  
Maria Teresa Petrucci ◽  
Gianluca Gaidano ◽  
Stelvio Ballanti ◽  
...  

Abstract INTRODUCTION: High-risk cytogenetic abnormalities, such as del(17p), t(4;14), and/or t(14;16), are associated to an unfavorable prognosis. Several trials investigating current approved regimens have shown that high-risk multiple myeloma (MM) patients have shorter progression-free survival (PFS) and overall survival (OS) as compared to standard-risk patients. Carfilzomib, a second generation proteasome inhibitor, demonstrated to be able to improve the survival of high-risk MM patients in the relapse setting. Here we present a pooled analysis of two phase 1/2 studies to investigate the role of carfilzomib in high-risk, newly diagnosed (ND) MM patients. METHODS: Transplant ineligible patients with NDMM enrolled in the IST-CAR 561 and IST-CAR 506 studies were pooled together and analyzed. All patients received 9 28-day induction cycles of carfilzomib, either 70 mg/m2 once weekly (IST-CAR 561) or 36 mg/m2 twice weekly (IST-CAR 506), combined with weekly cyclophosphamide (300 mg/m2) and dexamethasone (40 mg) (CCyd). After the induction phase, patients proceeded to maintenance with single-agent carfilzomib until progressive disease or intolerable toxicity. The primary objective was to compare response to treatment, PFS, PFS-2 and OS in standard versus high-risk FISH, defined by the presence of del(17p), t(4;14), and/or t(14;16). A 15% cut-off point was used for detection of translocation [t(4;14) and t(14;16)] and 10% for detection of del(17p). RESULTS: 121 NDMM patients were enrolled in the IST-CAR 561 (n=63) and in the IST-CAR 506 (n=58) study. Cytogenetic data were available in 94 patients: 37 (31%) had high-risk chromosomal abnormalities by FISH, including 10% of patients with t(4;14), 3% with t(14;16) and 18% with del(17p), while 57 patients (47%) were classified as standard-risk. After the induction phase, no difference in terms of overall response rate (ORR; 86% vs. 92%; p=0.52) and at least near complete response (39% vs. 41%; p=1) was observed between standard and high-risk patients. After a median follow-up of 39 months, median PFS from enrollment was NR in standard-risk patients and 27.8 months in high-risk ones (HR: 0.76; p=0.38) (Figure 1); at 3 years, 52% and 43% of patients, respectively, were alive and free from progression. The PFS benefit for the comparison between standard and high-risk patients was more pronounced in patients who received once weekly carfilzomib at 70 mg/m2, (median: NR vs. 39.6 months; HR: 0.78, p=0.63) as compared to those treated with twice weekly carfilzomib at 36 mg/m2 (median: NR vs. 24.2 months; HR: 0.52, p=0.12). Median PFS-2 from enrollment was NR in standard-risk patients and 44.1 months in high-risk ones (HR: 0.66; p=0.26), without significant differences in the once weekly (median, NR vs. 39.6; p=0.27) and the twice weekly group (median; NR vs. 44.1; p=0.63). Median OS from enrollment was NR in standard-risk patients and 47.5 months in high-risk ones (HR:0.71; p=0.36) (Figure 1). In patients who received once weekly carfilzomib, median OS was NR and 47.5 months (HR:0.66, p=0.48) in standard and high-risk patients, respectively, while median OS in the twice weekly group was NR in standard-risk patients and 44.1 months (HR:0.73; p=0.55) in high-risk ones. CONCLUSION: In transplant ineligible patients with NDMM, carfilzomib combined with cyclophosphamide and dexamethasone as initial treatment mitigated the poor prognosis of high-risk FISH in terms of PFS, PFS-2 and OS. The median PFS of high-risk patients treated with CCyd compares favorably with those reported with current standard of care. As compared to twice weekly carfilzomib at 36 mg/m2, once weekly carfilzomib, at the dose of 70 mg/m2, confirmed to be effective in high-risk patients. These data support the use of carfilzomib for the treatment of high-risk NDMM patients. Figure 1. Figure 1. Disclosures Larocca: Janssen-Cilag: Honoraria; Celgene: Honoraria; Bristol-Myers Squibb: Honoraria; Amgen: Honoraria. Petrucci:Amgen: Honoraria, Other: Advisory Board; Takeda: Honoraria, Other: Advisory Board; Bristol-Myers Squibb: Honoraria, Other: Advisory Board; Janssen-Cilag: Honoraria, Other: Advisory Board; Celgene: Honoraria, Other: Advisory Board. Gaidano:AbbVie: Other: Advisory Board; Janssen: Other: Advisory Board, Speakers Bureau. Musto:Amgen: Honoraria; BMS: Honoraria; Takeda: Honoraria; Janssen: Honoraria; Celgene: Honoraria. Offidani:Janssen: Honoraria, Other: Advisory Board; Takeda: Honoraria, Other: Advisory Board; Amgen: Honoraria, Other: Advisory Board; Bristol-Myers Squibb: Honoraria, Other: Advisory Board; Celgene: Honoraria, Other: Advisory Board. Cavo:Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees; GlaxoSmithKline: Honoraria, Membership on an entity's Board of Directors or advisory committees; AbbVie: Honoraria, Membership on an entity's Board of Directors or advisory committees; Adaptive Biotechnologies: Honoraria, Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees. Caravita di Toritto:Bristol-Myers Squibb: Honoraria, Other: Travel and Accomodation EMN; Amgen: Other: Advisory Board; Johnson & Johnson: Other: Advisory Board, Travel and Accomodation EHA; Celgene: Other: Advisory Board, Travel and Accomodation ASH, Research Funding; Takeda: Other: Advisory Board. Montefusco:Janssen: Other: Advisory Board; Amgen: Other: Advisory Board; Celgene: Other: Advisory Board. Palumbo:Takeda: Employment. Boccadoro:Bristol-Myers Squibb: Honoraria, Research Funding; AbbVie: Honoraria; Novartis: Honoraria, Research Funding; Janssen: Honoraria, Research Funding; Amgen: Honoraria, Research Funding; Celgene: Honoraria, Research Funding; Sanofi: Honoraria, Research Funding; Mundipharma: Research Funding. Bringhen:Celgene: Honoraria; Amgen: Honoraria, Other: Advisory Board; Janssen: Honoraria, Other: Advisory Board; Takeda: Consultancy; Bristol-Myers Squibb: Honoraria.


Sign in / Sign up

Export Citation Format

Share Document