scholarly journals Diphtheria Toxin Based Bivalent Anti-cMPL Immunotoxin Effectively Depletes Human Hematopoietic Stem and Progenitor Cells

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3808-3808
Author(s):  
Daisuke Araki ◽  
Diogo M. Magnani ◽  
Zhirui Wang ◽  
Richard H. Smith ◽  
Andre Larochelle

Abstract Patient conditioning is a critical initial step in hematopoietic stem and progenitor cell (HSPC) transplantation procedures to enable marrow engraftment of infused cells. Preparative regimens have traditionally been achieved by delivering cytotoxic doses of chemotherapeutic agents, with or without radiation. However, these regimens impair host immune function and are associated with significant morbidity. The use of monoclonal antibodies, either alone or conjugated to an internalizing toxin, to target specific antigens on hematopoietic cells has been proposed as a tractable alternative, especially in contexts, such as ex vivo autologous gene therapy, where preservation of immunity is desired. Efficient clearance of marrow has been demonstrated in preclinical models using CD45- or CD117-targeting antibodies conjugated to the plant toxin Saporin. However, this approach still awaits demonstration of long-term safety and efficacy in humans. In this study, we investigated whether toxin-conjugated antibodies targeting the cMPL receptor on HSPCs can provide the basis for a conditioning regimen prior to transplant. Thrombopoietin (TPO) and its receptor cMPL act as primary regulators of HSPC self-renewal and survival. The TPO:cMPL axis also regulates megakaryopoiesis and platelet production but, unlike CD45 and CD117 proteins, cMPL is otherwise not expressed in other blood cell types or in non-hematopoietic tissues. Hence, this approach may uniquely allow effective and specific depletion of host HSCs while sparing most hematopoietic progenitors and mature blood cells. To investigate cMPL as an antigen for targeted depletion of human HSPCs, we produced a recombinant bivalent anti-cMPL single-chain variable fragment (sc(FV) 2) (Orita et al. Blood 2004) fused with diphtheria toxin truncated at residue 390 (DT390) to prevent toxin internalization in off-target cells. We first confirmed the cMPL receptor-dependent cytotoxic effects of the anti-cMPL-DT390 conjugate in a HEK293A cell line engineered to express the human cMPL receptor. We observed marked cellular killing in vitro (IC50 = 21 pM) compared to the cMPL-negative control HEK293A cell line (Fig. A). Next, we assessed anti-cMPL-DT390 for its ability to inhibit growth of human CD34+ cells in vitro. G-CSF mobilized peripheral blood (PB) CD34+ cells were obtained from five healthy individuals. Surface expression of cMPL was compared by flow cytometry in subsets increasingly enriched in cells with long-term repopulating activity, including bulk CD34+, CD34+CD38- and CD34+CD38-CD90+CD45RA-CD49f+ cells. Levels of cMPL expression increased congruently with levels of HSC purity (Fig. B). Consistent with a cMPL dependent cytotoxic effect, increased cellular death was measured in populations expressing higher densities of cMPL receptors (IC50 = 104 nM), suggesting preferential targeting of the most primitive hematopoietic compartment (Fig. C). We then assessed whether anti-cMPL-DT390 could safely target and deplete human HSPCs in vivo in humanized NBSGW immunodeficient mice. At 12 weeks post-transplantation, engrafted animals (mean 19.8% CD45+ cells in PB) received a single maximum tolerated dose of 1.2 mg/kg anti-cMPL-DT390 (n=7) or vehicle control solution (n=7) by tail vein injection. HSPC depletion was assayed by measuring human myeloid (CD45+CD13+) chimerism in the mouse PB after antibody administration. We observed a gradual decline in HSPC activity, as represented by the decreased production of human myeloid cells following administration of anti-cMPL-DT390, peaking at 6 weeks with a 2.6-fold reduction in frequency of human CD45+CD13+ cells compared to untreated animals (p = 0.003) (Fig. D). Overall, our study provides proof-of-concept that bivalent anti-cMPL immunotoxin can effectively target and deplete human HSPCs, and may thus provide a novel nontoxic preparative approach to improve HSPC engraftment in transplantation for genetic and other nonmalignant disorders. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 143-143 ◽  
Author(s):  
Saar Gill ◽  
Sarah K Tasian ◽  
Marco Ruella ◽  
Olga Shestova ◽  
Yong Li ◽  
...  

Abstract Engineering of T cells with chimeric antigen receptors (CARs) can impart novel T cell specificity for an antigen of choice, and anti-CD19 CAR T cells have been shown to effectively eradicate CD19+ malignancies. Most patients with acute myeloid leukemia (AML) are incurable with standard therapies and may benefit from a CAR-based approach, but the optimal antigen to target remains unknown. CD123, the IL3Rα chain, is expressed on the majority of primary AML specimens, but is also expressed on normal bone marrow (BM) myeloid progenitors at lower levels. We describe here in vitro and in vivostudies to evaluate the feasibility and safety of CAR-based targeting of CD123 using engineered T cells (CART123 cells) as a therapeutic approach for AML. Our CAR consisted of a ScFv derived from hybridoma clone 32716 and signaling domains from 4-1-BB (CD137) and TCR-ζ. Among 47 primary AML specimens we found high expression of CD123 (median 85%, range 6-100%). Quantitative PCR analysis of FACS-sorted CD123dim populations showed measurable IL3RA transcripts in this population, demonstrating that blasts that are apparently CD123dim/neg by flow cytometry may in fact express CD123. Furthermore, FACS-sorted CD123dimblasts cultured in methylcellulose up-regulated CD123, suggesting that anti-CD123 immunotherapy may be a relevant strategy for all AML regardless of baseline myeloblast CD123 expression. CART123 cells incubated in vitro with primary AML cells showed specific proliferation, killing, and robust production of inflammatory cytokines (IFN-α, IFN-γ, RANTES, GM-CSF, MIP-1β, and IL-2 (all p<0.05). In NOD-SCID-IL2Rγc-/- (NSG) mice engrafted with the human AML cell line MOLM14, CART123 treatment eradicated leukemia and resulted in prolonged survival in comparison to negative controls of saline or CART19-treated mice (see figure). Upon MOLM14 re-challenge of CART123-treated animals, we further demonstrated robust expansion of previously infused CART123 cells, consistent with establishment of a memory response in animals. A crucial deficiency of tumor cell line models is their inability to represent the true clonal heterogeneity of primary disease. We therefore engrafted NSG mice that are transgenic for human stem cell factor, IL3, and GM-CSF (NSGS mice) with primary AML blasts and treated them with CART123 or control T cells. Circulating myeloblasts were significantly reduced in CART123 animals, resulting in improved survival (p = 0.02, n=34 CART123 and n=18 control animals). This observation was made regardless of the initial level of CD123 expression in the primary AML sample, again confirming that apparently CD123dimAML may be successfully targeted with CART123 cells. Given the potential for hematologic toxicity of CART123 immunotherapy, we treated mice that had been reconstituted with human CD34+ cells with CART123 cells over a 28 day period. We observed near-complete eradication of human bone marrow cells. This finding confirmed our finding of a significant reduction in methylcellulose colonies derived from normal cord blood CD34+ cells after only a 4 hour in vitro incubation with CART123 cells (p = 0.01), and was explained by: (i) low level but definite expression of CD123 in hematopoietic stem and progenitor cells, and (ii) up-regulation of CD123 upon myeloid differentiation. In summary, we show for the first time that human CD123-redirected T cells eradicate both primary human AML and normal bone marrow in xenograft models. As human AML is likely preceded by clonal evolution in normal or “pre-leukemic” hematopoietic stem cells (Hong et al. Science 2008, Welch et al. Cell 2012), we postulate that the likelihood of successful eradication of AML will be enhanced by myeloablation. Hence, our observations support CART-123 as a viable therapeutic strategy for AML and as a novel cellular conditioning regimen prior to hematopoietic cell transplantation. Figure 1. Figure 1. Disclosures: Gill: Novartis: Research Funding; American Society of Hematology: Research Funding. Carroll:Leukemia and Lymphoma Society: Research Funding. Grupp:Novartis: Research Funding. June:Novartis: Research Funding; Leukemia and Lymphoma Society: Research Funding. Kalos:Novartis: Research Funding; Leukemia and Lymphoma Society: Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4202-4202
Author(s):  
Benjamin Goebel ◽  
Christian Brendel ◽  
Daniela Abriss ◽  
Sabrina Kneissl ◽  
Martijn Brugman ◽  
...  

Abstract Introduction Generally, CD34+ cells are used for genetic modification in gene therapy trials. CD34+ cells consist of a heterogeneous cell population with mostly limited long-term repopulating capabilities, resulting in low long-term engraftment levels in particular in those diseases in which gene modified cells lack a proliferative advantage over non-modified cells. Therefore, modifications in gene transfer vectors and gene transfer strategies are required to improve long-term clinical benefit in gene therapy patients. One particular attractive approach to solve this problem is the improvement of HSC based gene transfer by specifically targeting cells with long-term engraftment capabilities. Material and Methods We constructed lentiviral gene transfer vectors (LV) specifically targeting CD133+ cells, a cell population with recognized long-term repopulating capabilities. Targeting is achieved by pseudotyping with engineered measles virus (MV) envelope proteins. The MV glycoprotein hemagglutinin, responsible for receptor recognition, is blinded for its native receptors and displays a single-chain antibody specific for CD133 (CD133-LV). These vectors were compared to VSV-pseudotyped lentiviral vectors in in vitro and in vivocompetitive repopulation assays using mobilized peripheral blood CD34+ cells. Results Superior transduction of isolated human hematopoietic stem cell populations (CD34+CD38- or CD34+CD133+ cells) compared to progenitor cell populations (CD34+CD38+ or CD34+CD133-) could be shown using the newly developed CD133-LV. Transduction of total CD34+ cells with CD133-LV vectors resulted in stable gene expression and gene marked cells expanded in vitro, while the number of VSV-G-LV transduced CD34+ cells declined over time. Competitive repopulation experiments in NSG mice showed a significantly improved engraftment of CD133-LV transduced HSCs. At ∼12 weeks post-transplantation gene marked hematopoiesis was dominated by the progeny of CD133-LV transduced cells in 42 out of 52 transplanted animals in the bone marrow and 39 out of 45 transplanted animals in the spleen, respectively. Consistent with this data we could show that stem cell content in the CD133-LV transduced population is about five times higher compared to the VSV-transduced population using a limiting dilution competitive repopulation assay (LDA-CRU). Experiments showing proof of principle for the application of this technology for the correction of Chronic Granulomatous Disease (XCGD) using patient derived CD34+ cells are currently ongoing. Discussion In conclusions this new strategy may be promising to achieve improved long-term engraftment in patients treated by gene therapy. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 111 (9) ◽  
pp. 4523-4531 ◽  
Author(s):  
Frederick D. Goldman ◽  
Geraldine Aubert ◽  
Al J. Klingelhutz ◽  
Mark Hills ◽  
Sarah R. Cooper ◽  
...  

Abstract Dyskeratosis congenita (DC) is an inherited bone marrow (BM) failure syndrome associated with mutations in telomerase genes and the acquisition of shortened telomeres in blood cells. To investigate the basis of the compromised hematopoiesis seen in DC, we analyzed cells from granulocyte colony-stimulating factor mobilized peripheral blood (mPB) collections from 5 members of a family with autosomal dominant DC with a hTERC mutation. Premobilization BM samples were hypocellular, and percentages of CD34+ cells in marrow and mPB collections were significantly below values for age-matched controls in 4 DC subjects. Directly clonogenic cells, although present at normal frequencies within the CD34+ subset, were therefore absolutely decreased. In contrast, even the frequency of long-term culture-initiating cells within the CD34+ DC mPB cells was decreased, and the telomere lengths of these cells were also markedly reduced. Nevertheless, the different lineages of mature cells were produced in normal numbers in vitro. These results suggest that marrow failure in DC is caused by a reduction in the ability of hematopoietic stem cells to sustain their numbers due to telomere impairment rather than a qualitative defect in their commitment to specific lineages or in the ability of their lineage-restricted progeny to execute normal differentiation programs.


Blood ◽  
1991 ◽  
Vol 77 (8) ◽  
pp. 1723-1733 ◽  
Author(s):  
SR Paul ◽  
YC Yang ◽  
RE Donahue ◽  
S Goldring ◽  
DA Williams

Abstract An elucidation of the interaction between the bone marrow microenvironment and hematopoietic stem cells is critical to the understanding of the molecular basis of stem cell self renewal and differentiation. This interaction is dependent, at least in part, on direct cell to cell contact or cellular adhesion to extracellular matrix proteins. Long-term bone marrow cultures (LTMC) provide an appropriate microenvironment for maintenance of primitive hematopoietic stem cells and a means of analyzing this stem cell-stromal cell interaction in vitro. Although LTMC have been successfully generated from murine and human bone marrow, only limited success has been reported in a primate system. In addition, few permanent stromal cell lines are available from nonmurine bone marrow. Because the primate has become a useful model for large animal bone marrow transplant studies and, more specifically, retroviral-mediated gene transfer analysis, we have generated immortalized bone marrow stromal cell lines from primate bone marrow using gene transfer of the Simian virus large T (SV40 LT) antigen. At least one stromal cell line has demonstrated the capacity to maintain early hematopoietic cells in long-term cultures for up to 4 weeks as measured by in vitro progenitor assays. Studies were undertaken to characterize the products of extracellular matrix biosynthesis and growth factor synthesis of this cell line, designated PU-34. In contrast to most murine bone marrow-derived stromal cell lines capable of supporting hematopoiesis in vitro that have been examined, the extracellular matrix produced by this primate cell line includes collagen types I, laminin. Growth factor production analyzed through RNA blot analysis, bone marrow cell culture data, and factor- dependent cell line proliferation assays includes interleukin-6 (IL-6), IL-7, granulocyte-macrophage colony-stimulating factor (GM-CSF), G-CSF, M-CSF, leukemia inhibitory factor, and a novel cytokine designated IL- 11. This immortalized primate bone marrow stromal cell line may be useful in maintaining early progenitor cells for experimental manipulation without the loss of reconstituting capacity and as a potential source of novel hematopoietic growth factors.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 564-564 ◽  
Author(s):  
Dan S. Kaufman ◽  
Petter S. Woll ◽  
Colin H. Martin ◽  
Jon L. Linehan ◽  
Xinghui Tian

Abstract We have previously described methods to use either stromal cell co-culture or embryoid-body (EB) formation to support the hematopoietic development of undifferentiated human ES cells (both H1 and H9 cell lines). Either FBS-based media or serum-free media with specific cytokines can be used to derive CD34+ cells, CD45+ cells and hematopoietic progenitors as identified by colony-forming cell (CFC) assays that give rise to mature myeloid, erythroid, and megakaryocytic cells. Genes such as RUNX1, HOXB4, TAL1, and GATA2, all known to be expressed during early hematopoiesis are up-regulated during hematopoietic differentiation of human ES cells. Here, we advance these studies to demonstrate that human ES cell-derived CD34+ cells function as early hematopoietic precursors in surrogate hematopoietic stem cell (HSC) assays. The long-term culture initiating cell (LTC-IC) assay is commonly used to quantify hematopoietic precursors that can be maintained in culture for 5 or more weeks. Human cord blood (CB)-derived CD34+ cells have a LTC-IC frequency of approximately 1:30. We demonstrate LTC-ICs can also be identified from human ES cell-derived CD34+ at a frequency of approximately 1:400. These results suggest CD34+ cells from human ES cells are more heterogeneous than CD34+ cells from CB. Furthermore, we now demonstrate in vitro culture of human ES cell-derived CD34+ cells identify these cells as lymphocyte precursors. Here, we used a natural killer (NK) cell-initiating cell assay (NK-IC) where CD34+ cells are cultured on AFT024 stromal cells in media containing IL15, IL7, and other defined cytokines for 2–4 weeks. Under these conditions, both CB and human ES cell-derived cells give rise to lymphoid cells (NK cells) with over 40% CD45+CD56+ cells. Under alternative culture conditions, CD3+ T cells can also be produced from CD34+ human ES cell-derived cells. Therefore, CD34+ cells derived from human ES cells represent both myeloid and lymphoid precursor cells. Since it is not possible to define a HSC population based solely on in vitro assays, we have examined the potential for human ES cell-derived hematopoietic cells to engraft in sublethally irradiated NOD/SCID mice. Detection of scid-repopulating cells (SRCs) are considered a better surrogate for HSCs. Bone marrow, peripheral blood, and splenocytes were examined for human CD34+ and CD45+ cells 3–6 months after injection of human ES cell-derived blood cells. PCR for human chromosome 17-specific alpha-satellite DNA was also done to confirm the presence of human cells in all mice showing evidence of engraftment. We consistently find stable engraftment with 0.5–3% human CD45+ cells in the bone marrow of these mice. To better define these cells as HSCs, secondary transplants also demonstrate stable engraftment. Importantly, no teratomas are demonstrated in mice injected with differentiated human ES cells. These results demonstrate that HSCs with long-term engraftment and multi-lineage potential can be routinely and efficiently generated from human ES cells.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1273-1273
Author(s):  
Yasuhiko Miyata ◽  
Yan Liu ◽  
Vladimir Jankovic ◽  
Goro Sashida ◽  
Silvia Menendez ◽  
...  

Abstract The relative quiescence of adult hematopoietic stem cells (HSCs) at steady state represents an important regulatory mechanism for maintaining their self-renewal and engraftment capacity, as well as their resistance to cytotoxic insults. However, the specific mechanisms regulating the intermittent entry of HSCs into the cell cycle are not well characterized. Here we provide the evidence that cyclin C (CCNC) specifically promotes the G0/G1 transition of human CD34+CD38- HSCs, and thus can significantly affect the loss of HSC self-renewal capacity in in vitro culture. Based on the recently hypothesized specific function of CCNC in G0 exit of human fibroblasts, we have analyzed the effects of CCNC loss on the behavior of human cord blood HSCs. We achieved a highly efficient knockdown of CCNC expression (>90%) using lentiviral shRNA (shCCNC) transduction of freshly isolated human cord blood CD34+ cells, allowing the in vitro assessment of early cell cycle regulation in HSCs. First, we observed a 3-fold increase in the G0 fraction of shCCNC transduced CD34+ cells compared to the empty vector control, based on the Pyronin Y and Hoechst 33342 staining 72h after infection. The depletion of CCNC did not prevent cell cycle progression beyond the G1 entry, as we observed no significant changes in the G1/S/G2-M distribution, indicating that critical CCNC activities may be restricted to the G0 checkpoint. Consistent with the reported enrichment of functional HSCs in the G0 fraction, CCNC knockdown (CCNC KD) cells showed increased activity in all surrogate in vitro assays of stem cell-ness tested: a ∼3 fold increase in CD34+ population after long term culture, a ∼2.5 fold increase in long-term culture initiating cells (LTC-ICs) and a ∼3.5 fold increase in cobblestone area forming cells (CAFCs). In contrast, CFU assays using freshly sorted shCCNC cells (and cells obtained after one-week culture in cytokines) showed only a minimal decrease in total colony number, with no difference in colony composition or morphology, indicating no significant effect on hematopoietic progenitor cell differentiation. However, we did observe a prominent effect on secondary CFUs after 2 and 3 weeks in liquid culture (i.e. using the delta assay), namely a 2-fold and 30-fold increase in shCCNC over control culture respectively, again indicating a specific function of CCNC on the more primitive cells. Consistently, CCNC KD robustly enhanced CD34 expression and secondary CFU maintenance in sorted CD34+CD38- cells (HSCs); both markers of hematopoietic cell immaturity were rapidly lost in CD34+CD38+ cells (i.e. the committed progenitor cells) with no detectable effect of shCCNC transduction. Finally, we have found that these effects of CCNC depletion are likely the result of its initial loss of function, as transient CCNC KD, using siRNA transfection of CD34+ cells, produced similar biological effects as the constitutive lentiviral shCCNC expression. Collectively, these data indicate a cell context-dependent effect of CCNC KD on the initial rate of cell cycle entry by quiescent HSCs and suggest that this approach could be used to preserve their functional capacity in culture, potentially enhancing the ex vivo expansion of HSCs, as well as their use in gene therapy protocols. Transplantation of transduced CD34+ cells into sublethally irradiated immunodeficient mice is now under way to establish the potentially beneficial effects of CCNC KD on the engraftment and repopulating capability of cultured HSCs.


Blood ◽  
2005 ◽  
Vol 106 (10) ◽  
pp. 3386-3395 ◽  
Author(s):  
Els Verhoeyen ◽  
Maciej Wiznerowicz ◽  
Delphine Olivier ◽  
Brigitte Izac ◽  
Didier Trono ◽  
...  

AbstractA major limitation of current lentiviral vectors (LVs) is their inability to govern efficient gene transfer into quiescent cells, such as human CD34+ cells, that reside in the G0 phase of the cell cycle and that are highly enriched in hematopoietic stem cells. This hampers their application for gene therapy of hematopoietic cells. Here, we designed novel LVs that overcome this restriction by displaying “early-acting cytokines” on their surface. Display of thrombopoietin, stem cell factor, or both cytokines on the LV surface allowed efficient gene delivery into quiescent cord blood CD34+ cells. Moreover, these surface-engineered LVs preferentially transduced and promoted survival of resting CD34+ cells rather than cycling cells. Finally, and most importantly, these novel LVs allowed superior gene transfer in the most immature CD34+ cells as compared to conventional LVs, even when the latter vectors were used to transduce cells in the presence of recombinant cytokines. This was demonstrated by their capacity to promote selective transduction of CD34+ cell in in vitro derived long-term culture-initiating cell (LTC-IC) colonies and of long-term NOD/SCID repopulating cells (SRCs) in vivo.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3246-3246
Author(s):  
Stefan Radtke ◽  
Margaret Cui ◽  
Anai M Perez ◽  
Yan-Yi Chan ◽  
Stefanie Schmuck ◽  
...  

Introduction: Hematopoietic stem cell (HSC) gene therapy/editing is a viable treatment option for various hematological diseases and disorders including hemoglobinopathies and HIV/AIDS. Most if not all currently available approaches target CD34-enriched cell fractions, a heterogeneous mix of mostly committed progenitor cells and only very few true HSCs with long-term multilineage engraftment potential. As a consequence, gene therapy/editing approaches are currently limited in their HSC targeting efficiency, very expensive consuming huge quantities of modifying reagents, and can lead to unwanted side-effects in non-target cells. We recently described a novel HSC-enriched CD34 subset (CD90+CD45RA-) that is exclusively responsible for rapid recovery onset, robust long-term multilineage engraftment, as well as entire reconstitution of the bone marrow stem cell compartment in the nonhuman primate (NHP) stem cell transplantation and gene therapy model (Radtke et al. 2017, STM). Most importantly, we demonstrate that this CD34 subset reduces the number of target cells, modifying reagents and costs by more than 10-fold without compromising the long-term efficiency of gene-modification in the NHP (Humbert and Radtke et al. 2019, STM). Here, we aimed to develop a clinical protocol to reliably purify and efficiently gene-modify human HSC-enriched CD90+ cell fractions. Methods: Large-scale enrichment of CD34+ cells from GCSF-mobilized leukapheresis products was initially performed on the Miltenyi CliniMACS Prodigy according to previously established protocols (Adair et al. 2017, Nat. Comm.). Yield, purity, quality, and feasibility of CD90 sorting was then comprehensively tested on two different commercially available cell sorting systems comparing the jet-in-air sorter FX500 from Sony and the cartridge-based closed-system sorter MACSQuant Tyto from Miltenyi Biotech with our clinically approved gold-standard CD34-mediated gene therapy approach. Sorted CD90+ and bulk CD34+ cells were transduced with a clinical-grade lentivirus encoding for GFP and the multilineage differentiation as well as engraftment potential tested using in vitro assays and the NSG mouse xenograft model, respectively. Results: Flow-cytometric sort-purification of CD90+ cells was similarly efficient in purity and yield using either the FX500 or Tyto (Figure A,B). Both approaches reliably reduced the overall target cell count by 10 to 15-fold without impacting the cells viability and in vitro colony-forming cell potential. Unexpectedly, the transduction efficiency of sort-purified CD90+ cells was significantly improved compared to bulk-transduced CD34+ cells and especially the CD34+CD90+ subset (Figure C). All cell fractions demonstrated robust mouse xenograft potential (Figure D). Most importantly, significantly higher levels of GFP+ expression in the peripheral blood, bone marrow, spleen and thymus were observed after transplantation of gene-modified CD90+ compared to bulk CD34+ cells in NSG mice (Figure E). Conclusion: Here, we show that sort-purification of our HSC-enriched CD34+CD90+ cell subset is technically feasible and highly reproducible in two different systems. Purification of human CD90+ cell fractions significantly increased the gene-modification efficiency of primitive human HSCs with multilineage mouse engraftment potential. These findings should have important implications for currently available as well as future HSC gene therapy and gene editing protocols. Isolation of an HSC-enriched phenotype will allow more targeted gene modification and thus likely reduce unwanted off target effects. Our approach further reduced the overall costs for gene modifying reagents, can be combined with a closed transduction system, increase the portability and ultimately make HSC gene therapy GMP-facility independent and affordable. Finally, this stem cell selection strategy may also allow efficient and effective depletion of donor T cells in the setting of allogeneic stem cell or organ transplantation. Figure: A) Purity and B) yield of CD90+ cells after sort-purification. C) Transduction efficiency of bulk-transduced CD34+CD90+ cells and sort-purified CD90+ cells. Frequency of D) human chimerism and E) GFP+ human CD45+ cells in the peripheral blood (PB), bone marrow, spleen and thymus after transplantation of gene-modified bulk CD34+ or sort-purified CD90+ cells. Figure Disclosures Kiem: CSL Behring: Consultancy; Rocket Pharma: Consultancy, Equity Ownership; Homology Medicines: Consultancy, Equity Ownership; Magenta Therapeutics: Consultancy.


Blood ◽  
1991 ◽  
Vol 77 (8) ◽  
pp. 1723-1733 ◽  
Author(s):  
SR Paul ◽  
YC Yang ◽  
RE Donahue ◽  
S Goldring ◽  
DA Williams

An elucidation of the interaction between the bone marrow microenvironment and hematopoietic stem cells is critical to the understanding of the molecular basis of stem cell self renewal and differentiation. This interaction is dependent, at least in part, on direct cell to cell contact or cellular adhesion to extracellular matrix proteins. Long-term bone marrow cultures (LTMC) provide an appropriate microenvironment for maintenance of primitive hematopoietic stem cells and a means of analyzing this stem cell-stromal cell interaction in vitro. Although LTMC have been successfully generated from murine and human bone marrow, only limited success has been reported in a primate system. In addition, few permanent stromal cell lines are available from nonmurine bone marrow. Because the primate has become a useful model for large animal bone marrow transplant studies and, more specifically, retroviral-mediated gene transfer analysis, we have generated immortalized bone marrow stromal cell lines from primate bone marrow using gene transfer of the Simian virus large T (SV40 LT) antigen. At least one stromal cell line has demonstrated the capacity to maintain early hematopoietic cells in long-term cultures for up to 4 weeks as measured by in vitro progenitor assays. Studies were undertaken to characterize the products of extracellular matrix biosynthesis and growth factor synthesis of this cell line, designated PU-34. In contrast to most murine bone marrow-derived stromal cell lines capable of supporting hematopoiesis in vitro that have been examined, the extracellular matrix produced by this primate cell line includes collagen types I, laminin. Growth factor production analyzed through RNA blot analysis, bone marrow cell culture data, and factor- dependent cell line proliferation assays includes interleukin-6 (IL-6), IL-7, granulocyte-macrophage colony-stimulating factor (GM-CSF), G-CSF, M-CSF, leukemia inhibitory factor, and a novel cytokine designated IL- 11. This immortalized primate bone marrow stromal cell line may be useful in maintaining early progenitor cells for experimental manipulation without the loss of reconstituting capacity and as a potential source of novel hematopoietic growth factors.


Sign in / Sign up

Export Citation Format

Share Document