scholarly journals Haploid Kmt2c Deletions Enhance Hematopoietic Stem Cell Mobilization in Response to Granulocyte-Colony Stimulating Factor

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2762-2762
Author(s):  
Ran Chen ◽  
Riddhi M Patel ◽  
Emily B Casey ◽  
Jeffrey A. Magee

Abstract KMT2C is one of several tumor suppressor genes deleted in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) as part of larger chromosome 7q deletions. These deletions are particularly common in therapy-related MDS/AML, raising the question of whether loss of one or more 7q genes conveys a selective advantage to hematopoietic stem cells (HSCs) in the setting of chemotherapy-induced stress. We recently showed that haploid Kmt2c deletions do indeed enhance HSC self-renewal capacity. However, the deletions do not drive HSCs into cycle; instead, a proliferative stress such as chemotherapy is required to create a context in which Kmt2c deletion convey a selective advantage. We have also identified a mechanism, to explain this phenotype. Kmt2c encodes MLL3, a SET domain protein that binds enhancers and facilitates transcription. We have shown that Kmt2c/MLL3 deletions impairs enhancer recruitment during HSC differentiation, therefore blunting HSC commitment. Our findings suggest that acquired or pre-existing 7q (KMT2C) deletions may select for HSCs that could give rise to MDS/AML in the setting of autologous-transplantation. Granulocyte-colony stimulating factor (G-CSF) is a cytokine that is often used to expedite neutrophil recovery after chemotherapy and to mobilize HSCs for collection and transplantation. We considered the possibility that 7q deletions, and KMT2C deletions in particular, may promote disproportionate mobilization of the mutant HSCs in response to G-CSF. To test this, we treated Kmt2c f/f; Vav1-Cre and Kmt2c f/+; Vav1-Cre mice with G-CSF, and we assessed HSC mobilization to the spleen and bone marrow. A far greater proportion of HSCs with heterozygous and homozygous Kmt2c deletions mobilized in response to G-CSF, relative to wild type HSCs. Kmt2c deletion also enhanced colony forming unit frequency in the peripheral blood after G-CSF treatment. Total body HSC numbers did not change in the body after G-CSF treatment on any genetic background, indicating that Kmt2c deletions enhanced HSC mobilization in response to G-CSF rather than self-renewal. To more faithfully recapitulate clinical conditions, we used Fgd5-CreER to delete a single Kmt2c allele in only a minority of HSCs. We then tested whether the mutant HSCs mobilized more efficiently than wild type HSCs. Surprisingly, Kmt2c deletions did not enhance HSC mobilization in this context. This raised the question of whether Kmt2c deletion in a non-HSC population could promote HSC mobilization in the Kmt2c f/+; Vav1-Cre mice. Indeed, analysis of mice chimeric for wild type and Kmt2c f/+; Vav1-Cre bone marrow suggested that Kmt2c non-cell autonomously regulates HSC mobilization. Finally, Kmt2c deletions did not enhance mobilization following exposure to plerixafor, a CXCR4 antagonist that acts directly on HSCs to promote mobilization rather than indirectly via monocyte populations, as occurs with G-CSF. Additional studies are needed to elucidate the mechanism by which Kmt2c non-cell autonomously regulates HSC mobilization. Our findings provide reassurance that, in a clinical setting, rare KMT2C-mutant HSCs will not disproportionately mobilize prior to apheresis. Furthermore, the data suggest that transient inhibition of MLL3, or its targets, may enhance HSC mobilization and negate selective advantages that 7q-deleted HSCs may acquire after chemotherapy treatment. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2004 ◽  
Vol 103 (6) ◽  
pp. 2071-2078 ◽  
Author(s):  
Janina Ratajczak ◽  
Ryan Reca ◽  
Magda Kucia ◽  
Marcin Majka ◽  
Daniel J. Allendorf ◽  
...  

Abstract The mechanisms regulating the homing/mobilization of hematopoietic stem/progenitor cells (HSPCs) are not fully understood. In our previous studies we showed that the complement C3 activation peptide, C3a, sensitizes responses of HSPCs to stromal-derived factor 1 (SDF-1). In this study, mobilization was induced with granulocyte colony-stimulating factor (G-CSF) in both C3-deficient (C3–/–) and C3a receptor–deficient (C3aR–/–) mice as well as in wild-type (wt) mice in the presence or absence of a C3aR antagonist, SB 290157. The data indicated (1) significantly increased G-CSF–induced mobilization in C3–/– and C3aR–/– mice compared with wt mice, (2) significantly accelerated and enhanced G-CSF–induced mobilization in wt, but not in C3–/– or C3aR–/–, mice treated with SB 290157, and (3) deposition of C3b/iC3b fragments onto the viable bone marrow (BM) cells of G-CSF–treated animals. Furthermore, mobilization studies performed in chimeric mice revealed that wt mice reconstituted with C3aR–/– BM cells, but not C3aR–/– mice reconstituted with wt BM cells, are more sensitive to G-CSF–induced mobilization, suggesting that C3aR deficiency on graft-derived cells is responsible for this increased mobilization. Hence we suggest that C3 is activated in mobilized BM into C3a and C3b, and that the C3a-C3aR axis plays an important and novel role in retention of HSPCs (by counteracting mobilization) by increasing their responsiveness to SDF-1, the concentration of which is reduced in BM during mobilization. The C3a-C3aR axis may prevent an uncontrolled release of HSPCs into peripheral blood. These data further suggest that the C3aR antagonist SB 290157 could be developed as a drug to mobilize HSPCs for transplantation.


Blood ◽  
2010 ◽  
Vol 116 (23) ◽  
pp. 4815-4828 ◽  
Author(s):  
Ingrid G. Winkler ◽  
Natalie A. Sims ◽  
Allison R. Pettit ◽  
Valérie Barbier ◽  
Bianca Nowlan ◽  
...  

Abstract In the bone marrow, hematopoietic stem cells (HSCs) reside in specific niches near osteoblast-lineage cells at the endosteum. To investigate the regulation of these endosteal niches, we studied the mobilization of HSCs into the bloodstream in response to granulocyte colony-stimulating factor (G-CSF). We report that G-CSF mobilization rapidly depletes endosteal osteoblasts, leading to suppressed endosteal bone formation and decreased expression of factors required for HSC retention and self-renewal. Importantly, G-CSF administration also depleted a population of trophic endosteal macrophages (osteomacs) that support osteoblast function. Osteomac loss, osteoblast suppression, and HSC mobilization occurred concomitantly, suggesting that osteomac loss could disrupt endosteal niches. Indeed, in vivo depletion of macrophages, in either macrophage Fas-induced apoptosis (Mafia) transgenic mice or by administration of clodronate-loaded liposomes to wild-type mice, recapitulated the: (1) loss of endosteal osteoblasts and (2) marked reduction of HSC-trophic cytokines at the endosteum, with (3) HSC mobilization into the blood, as observed during G-CSF administration. Together, these results establish that bone marrow macrophages are pivotal to maintain the endosteal HSC niche and that the loss of such macrophages leads to the egress of HSCs into the blood.


2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Wen-Ching Tzaan ◽  
Hsien-Chih Chen

Intervertebral disc (IVD) degeneration is a multifactorial process that is influenced by contributions from genetic predisposition, the aging phenomenon, lifestyle conditions, biomechanical loading and activities, and other health factors (such as diabetes). Attempts to decelerate disc degeneration using various techniques have been reported. However, to date, there has been no proven technique effective for broad clinical application. Granulocyte colony-stimulating factor (GCSF) is a growth factor cytokine that has been shown to enhance the availability of circulating hematopoietic stem cells to the brain and heart as well as their capacity for mobilization of mesenchymal bone marrow stem cells. GCSF also exerts significant increases in circulating neutrophils as well as potent anti-inflammatory effects. In our study, we hypothesize that GCSF can induce bone marrow stem cells differentiation and mobilization to regenerate the degenerated IVD. We found that GCSF had no contribution in disc regeneration or maintenance; however, there were cell proliferation within end plates. The effects of GCSF treatment on end plates might deserve further investigation.


2006 ◽  
Vol 26 (21) ◽  
pp. 8052-8060 ◽  
Author(s):  
Ewa Sicinska ◽  
Young-Mi Lee ◽  
Judith Gits ◽  
Hirokazu Shigematsu ◽  
Qunyan Yu ◽  
...  

ABSTRACT The proliferation of neutrophil granulocyte lineage is driven largely by granulocyte colony-stimulating factor (G-CSF) acting via the G-CSF receptors. In this study, we show that mice lacking cyclin D3, a component of the core cell cycle machinery, are refractory to stimulation by the G-CSF. Consequently, cyclin D3-null mice display deficient maturation of granulocytes in the bone marrow and have reduced levels of neutrophil granulocytes in their peripheral blood. The mutant mice are unable to mount a normal response to bacterial challenge and succumb to microbial infections. In contrast, the expansion of hematopoietic stem cells and lineage-committed myeloid progenitors proceeds relatively normally in mice lacking cyclin D3, revealing that the requirement for cyclin D3 function operates at later stages of neutrophil development. Importantly, we verified that this requirement is specific to cyclin D3, as mice lacking other G1 cyclins (D1, D2, E1, or E2) display normal granulocyte counts. Our analyses revealed that in the bone marrow cells of wild-type mice, activation of the G-CSF receptor leads to upregulation of cyclin D3. Collectively, these results demonstrate that cyclin D3 is an essential cell cycle recipient of G-CSF signaling, and they provide a molecular link of how G-CSF-dependent signaling triggers cell proliferation.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4815-4815
Author(s):  
Haruko Tashiro ◽  
Ryosuke Shirasaki ◽  
Yoko Oka ◽  
Tadashi Yamamoto ◽  
Nobu Akiyama ◽  
...  

Abstract Abstract 4815 Background and Aims: We reported that acute myelogenous leukemia blasts and chronic myelogenous leukemia cells converted to stromal myofibroblasts to create an environment for the proliferation of leukemic cells in vitro and also in a non-obese diabetes/ severe combined immunodeficiency (NOD/SCID) murine bone-marrow in vivo. In normal hematopoiesis, hematopoietic stem cell (HSC) and stromal immature mesenchymal stem cell (MSC) are speculated to have a cross-talk, and some reports indicate that the HSC generates MSC, and also a specific fraction of MSC shares similar molecular expressions to that of HSC. We made a hypothesis that HSC might be generated from MSC. To make clear this issue, expression cloning was performed to isolate a molecule that stimulated bone-marrow stromal myofibroblasts to express hematopoietic stem cell marker, CD34. And, we also observed the effect of the isolated molecule to an adult human dermal fibroblast (HDF). Materials and Methods: cDNA-expression library was constructed using PHA-P-stimulated normal human blood lymphocytes, and the prepared plasmids were transfected to COS7 cells. After 3 days of culture, supernatants were added to the normal human bone-marrow-derived myofibroblasts (final 10%), and cells were further cultured for one week. RNA was extracted from the cultured myofibroblasts, and cDNA was synthesized. Positive clones were selected on CD34-expression with reverse transcription-polymerase chain reaction, and a single clone was isolated. The purified protein from the isolated single clone was added to HDF-culture, and the morphological changes and the expression of specific hematopoiesis-related proteins were analyzed. Results and Discussion: Isolated single clone was human interleukin 1β (IL-1β). When the purified IL-1β protein was added to the bone-marrow-derived myofibroblast cultures, cell growth was increased, and up-regulation of the expression of several hematopoietic specific proteins, including cytokine receptors and transcription factor SCL, was observed. Based on these observations, we determined the effect of IL-1β to HDF. When HDFs were cultured with human IL-1β for 3 weeks, the expression of granulocyte colony-stimulating factor (G-CSF)-receptor, and SCL was increased. When these IL-1β-stimulated cells were cultured in a non-coated dish, cells were floating, and budding of the cells was also observed. When HDF were cultured with IL-1β for 3 weeks, and then G-CSF and erythropoietin were added to the cultures, expression of transcription factor GATA-1 and CEBPA was significantly increased after one week. These observations indicate that IL-1β can stimulate to induce HDF toward hematopoietic cells. Now we determine the precise actions of human IL-1β to HDF using NOD/SCID transplantation model in vivo. Disclosures: No relevant conflicts of interest to declare.


2018 ◽  
Vol 140 (1) ◽  
pp. 20-29 ◽  
Author(s):  
Jianyun Wen ◽  
Qareen Haque ◽  
Fuyu Pei ◽  
Libai Chen ◽  
Yongsheng Ruan ◽  
...  

Background: Hematopoietic stem cell transplantation (HSCT) is currently the only curative treatment for thalassemia majorTM. Graft rejection (GR) and graft-versus-host disease (GVHD) are the primary obstacles to a successful outcome. Methods: We conducted a retrospective study of HSCT in 29 children (median age at transplantation: 6 years) with Beta-thalassemia (β-TM) after the combined infusion of granulocyte colony-stimulating factor-primed bone marrow (G-BM) and cord blood (CB) from the human leukocyte antigen (HLA)-identical sibling donors. We also compared the outcomes of the co-transplanted children with those of children with β-TM who received G-BM alone from an HLA-identical sibling donor (n = 26). Results: Compared to the G-BM transplant (G-BMT) recipients, those who received a co-transplant had a lower incidence of grade ≥II acute (17.24 vs. 30.7%, p = 0.047) and limited chronic (0 vs.15.4%, p = 0.022) GVHD as well as a lower incidence of GR (0 vs. 7.7%, p = 0.132). Neutrophil recovery time was faster in the co-transplant group (18.5 vs. 21 days, p = 0.04). All the patients were monitored until December 31, 2016; the median follow-up time was 74 months<unterline>,</unterline> and the 5-year thalassemia-free survival rate was 89.7% in the co-transplant group and 84.6% in the G-BMT-alone group (p = 0.590). Conclusions: A combined CB and G-BM graft from an HLA-identical sibling donor is an effective treatment option for TM in children, with less acute and chronic GVHD.


Cytokine ◽  
2012 ◽  
Vol 58 (2) ◽  
pp. 218-225 ◽  
Author(s):  
Jochen Grassinger ◽  
Brenda Williams ◽  
Gemma H. Olsen ◽  
David N. Haylock ◽  
Susan K. Nilsson

Blood ◽  
2008 ◽  
Vol 111 (12) ◽  
pp. 5544-5552 ◽  
Author(s):  
Zsuzsanna E. Toth ◽  
Ronen R. Leker ◽  
Tal Shahar ◽  
Sandra Pastorino ◽  
Ildiko Szalayova ◽  
...  

Abstract Granulocyte colony-stimulating factor (G-CSF) induces proliferation of bone marrow–derived cells. G-CSF is neuroprotective after experimental brain injury, but the mechanisms involved remain unclear. Stem cell factor (SCF) is a cytokine important for the survival and differentiation of hematopoietic stem cells. Its receptor (c-kit or CD117) is present in some endothelial cells. We aimed to determine whether the combination of G-CSF/SCF induces angiogenesis in the central nervous system by promoting entry of endothelial precursors into the injured brain and causing them to proliferate there. We induced permanent middle cerebral artery occlusion in female mice that previously underwent sex-mismatched bone marrow transplantation from enhanced green fluorescent protein (EGFP)–expressing mice. G-CSF/SCF treatment reduced infarct volumes by more than 50% and resulted in a 1.5-fold increase in vessel formation in mice with stroke, a large percentage of which contain endothelial cells of bone marrow origin. Most cells entering the brain maintained their bone marrow identity and did not transdifferentiate into neural cells. G-CSF/SCF treatment also led to a 2-fold increase in the number of newborn cells in the ischemic hemisphere. These findings suggest that G-CSF/SCF treatment might help recovery through induction of bone marrow–derived angiogenesis, thus improving neuronal survival and functional outcome.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2920-2920
Author(s):  
Zhihua Ren ◽  
Wenhong Jiang ◽  
Zhenwang Jie ◽  
Xiaoxiao Liu ◽  
Fei Xia ◽  
...  

Abstract The human granulocyte colony-stimulating factor (G-CSF), a glycoprotein consisting of 174 amino acids, enhances the survival, proliferation, and differentiation of neutrophil precursors. G-CSF also induces the mobilization of hematopoietic stem cells and progenitors, which further stimulates recovery from neutropenia. Further studies indicates that Glu19 in the A helix of G-CSF molecule electrostatically inter-reacts with Arg288 of G-CSF-R. A recent study on the crystal structure of G-CSF, complexed with the cytokine homologous region of G-CSF-R, reveals that residues in the amino-terminus of G-CSF may act as additional contact sites with G-CSF-R. In this investigation, we designed and purified a novel recombinant human granulocyte colony-stimulating factor analog (rhG-CSFa), which has three extra amino acid residues (arginine, glycine, and serine) added at the amino-terminus. The structural modification resulted in more positive charge in the amino-terminus of G-CSFa, and was expected to further enhance the binding between the cytokine and its receptor. We optimized the purification procedure, achieving further improvements in refolding rate and overall yield. In preclinical studies, we evaluated the pharmacodynamics, pharmacokinetics, acute, subacute, and chronic toxicity of rhG-CSFa. Pharmacodynamics study in non-human primates demonstrated that intravenous rhG-CSFa induces typical peripheral neutrophil responses (with two peaks from treatment day 8 to day 20) and dramatic increases in the recovery rate in the animal model. More importantly, rhG-CSFa induced a higher peak of neutrophil recovery on day 7 than wild G-CSF did in monkeys, a result indicating that rhG-CSFa would provide greater benefit for patients receiving myeloid-suppressive therapies. In addition, rhG-CSFa maintained higher neutrophil counts than wild-type G-CSF did after cessation of G-CSF administration in monkeys; its effects persisted over 20 days post-treatment, which should be more helpful to patients for combating deleterious infections and preparing for the next round of treatment in clinic. In pharmacokinetics studies, the novel rhG-CSFa displayed a lower plasma clearance rate, 0.28 ml/min/kg (vs 0.5-0.7 ml/min/kg for wild-type G-CSF). This result suggests that rhG-CSFa may dissociate from its receptor at a slower rate than does wild-type G-CSF, which is possibly due to a tighter binding to its cognate receptor, and would result in a much extended plasma functional half-life. In further preclinical safety evaluation, no obvious toxicity or immunogenicity was observed, neither was any adverse drug reaction. In conclusion, we have generated a novel rhG-CSFa protein, with much higher yield, enhanced circulation half-life, improved thermal stability and greater bioactivity (without changing the overall conformation), compared with wild type G-CSF. Our preclinical studies strongly suggest that rhG-CSFa can be further explored for clinical trials for eventual applications in the clinic. Disclosures Ren: Biopharmagen corp: Employment. Jiang:Biopharmagen.corp: Employment. Shi:Biopharmagen corp: Employment. Jiang:Biopharmagen.corp: Employment.


Sign in / Sign up

Export Citation Format

Share Document