Mobilization studies in mice deficient in either C3 or C3a receptor (C3aR) reveal a novel role for complement in retention of hematopoietic stem/progenitor cells in bone marrow

Blood ◽  
2004 ◽  
Vol 103 (6) ◽  
pp. 2071-2078 ◽  
Author(s):  
Janina Ratajczak ◽  
Ryan Reca ◽  
Magda Kucia ◽  
Marcin Majka ◽  
Daniel J. Allendorf ◽  
...  

Abstract The mechanisms regulating the homing/mobilization of hematopoietic stem/progenitor cells (HSPCs) are not fully understood. In our previous studies we showed that the complement C3 activation peptide, C3a, sensitizes responses of HSPCs to stromal-derived factor 1 (SDF-1). In this study, mobilization was induced with granulocyte colony-stimulating factor (G-CSF) in both C3-deficient (C3–/–) and C3a receptor–deficient (C3aR–/–) mice as well as in wild-type (wt) mice in the presence or absence of a C3aR antagonist, SB 290157. The data indicated (1) significantly increased G-CSF–induced mobilization in C3–/– and C3aR–/– mice compared with wt mice, (2) significantly accelerated and enhanced G-CSF–induced mobilization in wt, but not in C3–/– or C3aR–/–, mice treated with SB 290157, and (3) deposition of C3b/iC3b fragments onto the viable bone marrow (BM) cells of G-CSF–treated animals. Furthermore, mobilization studies performed in chimeric mice revealed that wt mice reconstituted with C3aR–/– BM cells, but not C3aR–/– mice reconstituted with wt BM cells, are more sensitive to G-CSF–induced mobilization, suggesting that C3aR deficiency on graft-derived cells is responsible for this increased mobilization. Hence we suggest that C3 is activated in mobilized BM into C3a and C3b, and that the C3a-C3aR axis plays an important and novel role in retention of HSPCs (by counteracting mobilization) by increasing their responsiveness to SDF-1, the concentration of which is reduced in BM during mobilization. The C3a-C3aR axis may prevent an uncontrolled release of HSPCs into peripheral blood. These data further suggest that the C3aR antagonist SB 290157 could be developed as a drug to mobilize HSPCs for transplantation.

Blood ◽  
1997 ◽  
Vol 89 (9) ◽  
pp. 3186-3191 ◽  
Author(s):  
Yoshikazu Sudo ◽  
Chihiro Shimazaki ◽  
Eishi Ashihara ◽  
Takehisa Kikuta ◽  
Hideyo Hirai ◽  
...  

Abstract We have previously shown that FLT-3 ligand (FL) mobilizes murine hematopoietic primitive and committed progenitor cells into blood dose-dependently. Whether FL also acts synergistically with granulocyte colony-stimulating factor (G-CSF ) to induce such mobilization has now been investigated. Five- to 6-week-old C57BL/6J mice were injected subcutaneously with recombinant human G-CSF (250 μg/kg), Chinese hamster ovarian cell-derived FL (20 μg/kg), or both cytokines daily for 5 days. The number of colony-forming cells (CFCs) in peripheral blood increased approximately 2-, 21-, or 480-fold after administration of FL, G-CSF, or the two cytokines together, respectively, for 5 days. The number of CFCs in bone marrow decreased after 3 days but was increased approximately twofold after 5 days of treatment with G-CSF. The number of CFCs in the bone marrow of mice treated with both FL and G-CSF showed a 3.4-fold increase after 3 days and subsequently decreased to below control values. The number of CFCs in spleen was increased 24.2- and 93.7-fold after 5 days of treatment with G-CSF alone or in combination with FL, respectively. The number of colony-forming unit-spleen (CFU-S) (day 12) in peripheral blood was increased 13.2-fold by G-CSF alone and 182-fold by G-CSF and FL used together after 5 days of treatment. Finally, the number of preCFU-S mobilized into peripheral blood was also increased by the administration of FL and G-CSF. These observations show that FL synergistically enhances the G-CSF–induced mobilization of hematopoietic stem cells and progenitor cells into blood in mice, and that this combination of growth factors may prove useful for obtaining such cells in humans for transplantation.


Blood ◽  
1995 ◽  
Vol 86 (9) ◽  
pp. 3500-3506 ◽  
Author(s):  
C Berthou ◽  
JP Marolleau ◽  
C Lafaurie ◽  
A Soulie ◽  
L Dal Cortivo ◽  
...  

Granzyme B and perforin are cytoplasmic granule-associated proteins used by cytotoxic T lymphocytes and natural killer (NK) cells to kill their targets. However, granzyme B gene expression has also been detected in a non-cytotoxic hematopoietic murine multipotent stem cell line, FDCP-Mix. The objective of the present study was to investigate whether granzyme B and perforin could be expressed in human hematopoietic CD34+ cells and if present, discover what their physiologic relevance could be. The primitive CD34+ human cell line KG1a was investigated first and was found to express granzyme B and perforin. Highly purified hematopoietic stem/progenitor cells were then selected using the CD34 surface antigen as marker. Steady-state bone marrow (BM) CD34+ cells did not contain these proteins. Peripheral blood (PB) CD34+ cells, which had been induced to circulate, were also analyzed. After chemotherapy (CT) and granulocyte colony-stimulating factor (G-CSF) treatment, CD34+ cells strongly expressed mRNAs and proteins of granzyme B and perforin. In contrast, CD34+ cells mobilized by G-CSF alone were negative. Western blot analysis further showed that granzyme B and perforin proteins were identical in CD34+ cells and activated PBLs. Such proteins might be implicated in the highly efficient migration of CD34+ stem/progenitor cells from BM to PB after CT and G-CSF treatment. The cellular adhesion mechanisms involved in the BM homing of CD34+ cells are disrupted at least temporarily after CT. The Asp-ase proteolytic activity of granzyme B on extracellular matrix proteins could be used by progenitor cells for their rapid detachment from BM stromal cells and perforin might facilitate their migration across the endothelial cell barrier.


Blood ◽  
2017 ◽  
Vol 129 (14) ◽  
pp. 1901-1912 ◽  
Author(s):  
Jeffrey M. Bernitz ◽  
Michael G. Daniel ◽  
Yesai S. Fstkchyan ◽  
Kateri Moore

Key Points G-CSF mobilizes dormant HSCs without proliferation. Transplantation defects of mobilized peripheral blood-derived hematopoietic stem and progenitor cells are divisional history independent.


Blood ◽  
1988 ◽  
Vol 72 (6) ◽  
pp. 2074-2081 ◽  
Author(s):  
U Duhrsen ◽  
JL Villeval ◽  
J Boyd ◽  
G Kannourakis ◽  
G Morstyn ◽  
...  

Hematopoietic progenitor cell levels were monitored in the peripheral blood and bone marrow of 30 cancer patients receiving recombinant human granulocyte-colony stimulating-factor (rG-CSF) in a phase I/II clinical trial. The absolute number of circulating progenitor cells of granulocyte-macrophage, erythroid, and megakaryocyte lineages showed a dose-related increase up to 100-fold after four days of treatment with rG-CSF and often remained elevated two days after the cessation of therapy. The relative frequency of different types of progenitor cells in peripheral blood remained unchanged. The frequency of progenitor cells in the marrow was variable after rG-CSF treatment but in most patients was slightly decreased. The responsiveness of bone marrow progenitor cells to stimulation in vitro by rG-CSF and granulocyte- macrophage colony-stimulating factor did not change significantly during rG-CSF treatment. In patients nine days after treatment with melphalan and then rG-CSF, progenitor cell levels were very low with doses of rG-CSF at or below 10 micrograms/kg/d, but equaled or exceeded pretreatment values when 30 or 60 micrograms/kg/d of rG-CSF was given.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2762-2762
Author(s):  
Ran Chen ◽  
Riddhi M Patel ◽  
Emily B Casey ◽  
Jeffrey A. Magee

Abstract KMT2C is one of several tumor suppressor genes deleted in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) as part of larger chromosome 7q deletions. These deletions are particularly common in therapy-related MDS/AML, raising the question of whether loss of one or more 7q genes conveys a selective advantage to hematopoietic stem cells (HSCs) in the setting of chemotherapy-induced stress. We recently showed that haploid Kmt2c deletions do indeed enhance HSC self-renewal capacity. However, the deletions do not drive HSCs into cycle; instead, a proliferative stress such as chemotherapy is required to create a context in which Kmt2c deletion convey a selective advantage. We have also identified a mechanism, to explain this phenotype. Kmt2c encodes MLL3, a SET domain protein that binds enhancers and facilitates transcription. We have shown that Kmt2c/MLL3 deletions impairs enhancer recruitment during HSC differentiation, therefore blunting HSC commitment. Our findings suggest that acquired or pre-existing 7q (KMT2C) deletions may select for HSCs that could give rise to MDS/AML in the setting of autologous-transplantation. Granulocyte-colony stimulating factor (G-CSF) is a cytokine that is often used to expedite neutrophil recovery after chemotherapy and to mobilize HSCs for collection and transplantation. We considered the possibility that 7q deletions, and KMT2C deletions in particular, may promote disproportionate mobilization of the mutant HSCs in response to G-CSF. To test this, we treated Kmt2c f/f; Vav1-Cre and Kmt2c f/+; Vav1-Cre mice with G-CSF, and we assessed HSC mobilization to the spleen and bone marrow. A far greater proportion of HSCs with heterozygous and homozygous Kmt2c deletions mobilized in response to G-CSF, relative to wild type HSCs. Kmt2c deletion also enhanced colony forming unit frequency in the peripheral blood after G-CSF treatment. Total body HSC numbers did not change in the body after G-CSF treatment on any genetic background, indicating that Kmt2c deletions enhanced HSC mobilization in response to G-CSF rather than self-renewal. To more faithfully recapitulate clinical conditions, we used Fgd5-CreER to delete a single Kmt2c allele in only a minority of HSCs. We then tested whether the mutant HSCs mobilized more efficiently than wild type HSCs. Surprisingly, Kmt2c deletions did not enhance HSC mobilization in this context. This raised the question of whether Kmt2c deletion in a non-HSC population could promote HSC mobilization in the Kmt2c f/+; Vav1-Cre mice. Indeed, analysis of mice chimeric for wild type and Kmt2c f/+; Vav1-Cre bone marrow suggested that Kmt2c non-cell autonomously regulates HSC mobilization. Finally, Kmt2c deletions did not enhance mobilization following exposure to plerixafor, a CXCR4 antagonist that acts directly on HSCs to promote mobilization rather than indirectly via monocyte populations, as occurs with G-CSF. Additional studies are needed to elucidate the mechanism by which Kmt2c non-cell autonomously regulates HSC mobilization. Our findings provide reassurance that, in a clinical setting, rare KMT2C-mutant HSCs will not disproportionately mobilize prior to apheresis. Furthermore, the data suggest that transient inhibition of MLL3, or its targets, may enhance HSC mobilization and negate selective advantages that 7q-deleted HSCs may acquire after chemotherapy treatment. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4709-4709
Author(s):  
Yiwen Ling ◽  
Qifa Liu ◽  
Zhiping Fan ◽  
Xiuli Wu ◽  
Can Liu ◽  
...  

Abstract Abstract 4709 Objective: As granulocyte colony-stimulating factor, recombinant human granulocyte colony stimulating factor (rhG-CSF) is widely used in neutropenic patients. In addition to stimulating the growth of granulocyte, rhG-CSF can promote hematopoietic stem cells from bone marrow (BM) to peripheral blood (PB) and has the effect of immune regulation. Myeloid-derived suppressor cells (MDSC) are a group of heterogeneous cells, derived from bone marrow progenitor cells and immature myeloid cells. Recently, MDSC is researched in the field of solid tumor, but not in the field of hematopoietic stem cell transplantation. Here, we investigate rhG-CSF's effect on MDSC in healthy donors’ BM, PB and the relationship between MDSC and graft-verse-host disease (GVHD). Methods: We obtained the BM and PB samples before mobilization and the BM APB and peripheral blood stem cell collection (PBSC) on the 5th day after the rhG-CSF mobilization from 12 healthy donors, respectively. Then we used the flow cytometry to check the absolute number of MDSC. Finally, we analyzed the relationship between the number of MDSC and the incidence of GVHD. Results: In normal physiological conditions, the MDSC could be detected in healthy donor's PB and BM. In PB, the proportion of MDSC in the mononuclear cells was 1.35 ± 0.35%. In BM, the proportion was 2.44 ± 1.11%. The proportion in BM is higher than that in PB, the difference was statistically significant (P=0.047). On the 5th day after the rhG-CSF mobilization, the MDSC ratio of mononuclear cell in PB were 4.01 ± 1.82%. In BM, the ratio was 4.38 ± 2.19%. The difference between the ratio of MDSC in BM and PB was no significant (P=0.076). The number of mobilized peripheral blood MDSC was significantly higher than that before mobilization (P=0.015), while the difference between the numbers of bone marrow MDSC cells before and after mobilization was not significant (P=0.083). The numbers of MDSC in collection and the incidence of GVHD had a significant negative correlation (P=0.048). Conclusion: MDSC could be detected in the healthy donors’ PB and BM, the numbers of MDSC in BM were higher than that in PB. The rhG-CSF could mobilize more MDSC from BM to the peripheral blood, and the increased s of MDSC in PB after rhG-CSF mobilization might be related to the low incidence of GVHD in hematopoietic stem cell transplantation. Supported by National Natural Science Foundation of China (30971300), Science and Technology Planning Project of Guangdong Province of China (2009A030200007) and China Postdoctoral Science Foundation (200902332, 20080440776). Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1997 ◽  
Vol 89 (11) ◽  
pp. 3991-3997 ◽  
Author(s):  
Felipe Prosper ◽  
Kirk Vanoverbeke ◽  
David Stroncek ◽  
Catherine M. Verfaillie

Abstract We have recently shown that more than 90% of long-term culture initiating cells (LTC-IC) mobilized in the peripheral blood (PB) of normal individuals express HLA-DR and CD38 antigens and can sustain hematopoiesis for only 5 weeks. However, 10% of LTC-IC in mobilized PB are CD34+HLA-DR− and CD34+CD38− and can sustain hematopoiesis for at least 8 weeks. We now examine the ex vivo expansion potential of CD34+HLA-DR+ cells (rich in mature LTC-IC) and CD34+HLA-DR− cells (rich in primitive LTC-IC) in granulocyte colony-stimulating factor (G-CSF ) mobilized PB progenitor cells (PBPC). Cells were cultured in contact with M2-10B4 cells (contact) or in transwells above M2-10B4 (noncontact) without and with interleukin-3 (IL-3) and macrophage inflammatory protein (MIP-1α) for 2 and 5 weeks. Progeny were evaluated for the presence of colony-forming cells (CFC) and LTC-IC. When CD34+HLA-DR+ PB cells were cultured in contact cultures without cytokines, a threefold expansion of CFC was seen at 2 weeks, but an 80% decrease in CFC was seen at week 5. Further, the recovery of LTC-IC at week 2 was only 17% and 1% at week 5. This confirms our previous observation that although CD34+HLA-DR+ mobilized PB cells can initiate long-term cultures, they are relatively mature and cannot sustain long-term hematopoiesis. In contrast, when CD34+HLA-DR− mobilized PB cells were cultured in contact cultures without cytokines, CFC expansion persisted until week 5 and 49% and 11% of LTC-IC were recovered at week 2 and 5, respectively. As we have shown for steady state bone marrow (BM) progenitors, recovery of LTC-IC was threefold higher when CD34+HLA-DR− PBPC were cultured in noncontact rather than contact cultures, and improved further when IL-3 and MIP-1α were added to noncontact cultures (96 ± 2% maintained at week 5). We conclude that although G-CSF mobilizes a large population of “mature” CD34+HLA-DR+ LTC-IC with a limited proliferative capacity, primitive CD34+HLA-DR− LTC-IC present in mobilized PB have similar characteristics as LTC-IC from steady state BM: (1) they can be maintained in noncontact cultures containing IL-3 and MIP-1α for at least 5 weeks; (2) they are subject to the same proliferation inhibitory influences of contact with stroma. Since the absolute number of primitive LTC-IC (week 8 LTC-IC) per mL of G-CSF mobilized PB is similar to that per mL of steady state BM, these studies further confirm that G-CSF mobilized PBPC may have similar long-term repopulating abilities as steady state BM.


Blood ◽  
1994 ◽  
Vol 84 (11) ◽  
pp. 3948-3955 ◽  
Author(s):  
F Aversa ◽  
A Tabilio ◽  
A Terenzi ◽  
A Velardi ◽  
F Falzetti ◽  
...  

Patients who undergo transplantation with haploidentical “three-loci” mismatched T-cell-depleted bone marrow (BM) are at high risk for graft failure. To overcome the host-versus-graft barrier, we increased the size of the graft inoculum, which has been shown to be a major factor in controlling both immune rejection and stem cell competition in murine models. Seventeen patients (mean age, 23.2 years; range, 6 to 51 years) with end-stage chemoresistant leukemia were received transplants of a combination of BM with recombinant human granulocyte colony- stimulating factor-mobilized peripheral blood progenitor cells from HLA- haploidentical “three-loci” incompatible family members. The average concentration of colony-forming unit-granulocyte-macrophage in the final inoculum was sevenfold to 10-fold greater than that found in BM alone. The sole graft-versus-host disease (GVHD) prophylaxis consisted of T-cell depletion of the graft by the soybean agglutination and E- rosetting technique. The conditioning regimen included total body irradiation in a single fraction at a fast dose rate, antithymocyte globulin, cyclophosphamide and thiotepa to provide both immunosuppression and myeloablation. One patient rejected the graft and the other 16 had early and sustained full donor-type engraftment. One patient who received a much greater quantity of T lymphocytes than any other patient died from grade IV acute GVHD. There were no other cases of GVHD > or = grade II. Nine patients died from transplant-related toxicity, 2 relapsed, and 6 patients are alive and event-free at a median follow-up of 230 days (range, 100 to 485 days). Our results show that a highly immunosuppressive and myeloablative conditioning followed by transplantation of a large number of stem cells depleted of T lymphocytes by soybean agglutination and E-rosetting technique has made transplantation of three HLA-antigen disparate grafts possible, with only rare cases of GVHD.


Blood ◽  
1988 ◽  
Vol 72 (6) ◽  
pp. 2074-2081 ◽  
Author(s):  
U Duhrsen ◽  
JL Villeval ◽  
J Boyd ◽  
G Kannourakis ◽  
G Morstyn ◽  
...  

Abstract Hematopoietic progenitor cell levels were monitored in the peripheral blood and bone marrow of 30 cancer patients receiving recombinant human granulocyte-colony stimulating-factor (rG-CSF) in a phase I/II clinical trial. The absolute number of circulating progenitor cells of granulocyte-macrophage, erythroid, and megakaryocyte lineages showed a dose-related increase up to 100-fold after four days of treatment with rG-CSF and often remained elevated two days after the cessation of therapy. The relative frequency of different types of progenitor cells in peripheral blood remained unchanged. The frequency of progenitor cells in the marrow was variable after rG-CSF treatment but in most patients was slightly decreased. The responsiveness of bone marrow progenitor cells to stimulation in vitro by rG-CSF and granulocyte- macrophage colony-stimulating factor did not change significantly during rG-CSF treatment. In patients nine days after treatment with melphalan and then rG-CSF, progenitor cell levels were very low with doses of rG-CSF at or below 10 micrograms/kg/d, but equaled or exceeded pretreatment values when 30 or 60 micrograms/kg/d of rG-CSF was given.


Sign in / Sign up

Export Citation Format

Share Document