scholarly journals Low-dose decitabine modulates myeloid-derived suppressor cell function and restores immune tolerance in immune thrombocytopenia

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2089-2089
Author(s):  
Xiaofei Ni ◽  
Lingjun Wang ◽  
Tianshu Yu ◽  
Haoyi Wang ◽  
Yu Hou ◽  
...  

Abstract Low-dose decitabine modulates myeloid-derived suppressor cell function and restores immune tolerance in immune thrombocytopenia Primary immune thrombocytopenia (ITP) is an autoimmune disorder characterized with increased risk of bleeding. Myeloid-derived suppressor cells (MDSCs) are heterogeneous immature cells and natural inhibitors of adaptive immunity. Metabolic changes within MDSCs elucidate a direct influence on immunologic consequences of their suppressive activity. Liver kinase B1 (LKB1) is a tumor suppressor gene of STK11/LKB1 coding serine/Sue, and LKB1 signaling pathway plays an important role as a "bridge" between metabolic balance and functional homeostasis of immune cells. Our previous studies demonstrated that low dose decitabine, a hypomethylating agent, significantly increased the number of mature polyploidy megakaryocytes and exhibited long-term clinical efficacy. Besides, it also increased the production of Treg and enhanced their immunosuppressive function in ITP. However, whether decitabine could regulate the metabolic and suppressive activity of MDSCs in ITP is unknown. The percentage of MDSCs in peripheral blood mononuclear cells (PBMCs) was determined by flow cytometry, which was shown to be significantly lower in ITP compared with that in healthy controls. We then investigated the effect of low-dose decitabine in patients with active ITP, where decitabine induced a significant expansion of MDSCs in line with an impressive platelet response. In the in vitro experiments, MDSCs were isolated from PBMCs of ITP patients or healthy controls and cultured with different concentrations of decitabine (0/10nM/50nM/100 nM/1uM/10μM) for 7 days. A concentration gradient from 50nM to 1uM stimulated MDSCs amplification in a dose-dependent manner, and we chose an optimal concentration of 100 nM. Moreover, we found the mRNA expression level of LKB1, AMPKα1, AMPKα2, AMPKβ1, AMPKβ2, AMPKγ1, and AMPKγ2 was significantly lower in ITP patients than that in healthy control subjects. After incubation with decitabine (100nM), the relative expression of the above molecules were significantly increased compared to untreated levels. We also analyzed oxygen consumption rate (OCR) and key parameters of mitochondrial function within MDSCs. Overall, the OCR curve of ITP patients was lower than that of the healthy control subjects, and the OCR curve of ITP patients significantly improved after treatment with decitabine. We sorted the cultured MDSCs and co-cultured them with CFSE-labeled CD4 +CD25 - T cells to evaluate the suppressive activity of MDSCs. Results indicated that the inhibitory function of decitabine-modulated MDSCs was corrected in line with metabolic rewriting. We further established the ITP murine model by transferring splenocytes of C57BL/6 CD61 knockout mice, immunized against platelets from wild-type syngeneic C57BL/6 mice, into severe combined immune deficient (SCID) mice. MDSCs were sorted from the bone marrow of wild-type mice and incubated with PBS or decitabine, respectively. SCID mice were divided into three groups and received the same numbers of splenocyte transfer, two groups were given additional transfer of PBS-treated or decitabine-treated MDSCs. Our data showed that the decitaine-treated MDSCs group had significantly higher platelet counts compared with control group and PBS-treated MDSCs group. In summary, our findings suggest that the immune function and metabolic characteristics of MDSCs in ITP patients are impaired. These data shed new light on the molecular mechanism of decitabine action by regulating immune function and aerobic metabolism via LKB1, which supervises the immunosuppressive functions of MDSCs. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2016 ◽  
Vol 127 (12) ◽  
pp. 1587-1597 ◽  
Author(s):  
Yu Hou ◽  
Qi Feng ◽  
Miao Xu ◽  
Guo-sheng Li ◽  
Xue-na Liu ◽  
...  

Key Points The impaired suppressive function of myeloid-derived suppressor cells plays a role in the pathogenesis of immune thrombocytopenia. The effect of dexamethasone in correcting dysfunction of myeloid-derived suppressor cells suggests a new therapeutic mechanism of high-dose dexamethasone in patients with immune thrombocytopenia.


Critical Care ◽  
2019 ◽  
Vol 23 (1) ◽  
Author(s):  
McKenzie K. Hollen ◽  
Julie A. Stortz ◽  
Dijoia Darden ◽  
Marvin L. Dirain ◽  
Dina C. Nacionales ◽  
...  

Abstract Background Sepsis is an increasingly significant challenge throughout the world as one of the major causes of patient morbidity and mortality. Central to the host immunologic response to sepsis is the increase in circulating myeloid-derived suppressor cells (MDSCs), which have been demonstrated to be present and independently associated with poor long-term clinical outcomes. MDSCs are plastic cells and potentially modifiable, particularly through epigenetic interventions. The objective of this study was to determine how the suppressive phenotype of MDSCs evolves after sepsis in surgical ICU patients, as well as to identify epigenetic differences in MDSCs that may explain these changes. Methods Circulating MDSCs from 267 survivors of surgical sepsis were phenotyped at various intervals over 6 weeks, and highly enriched MDSCs from 23 of these samples were co-cultured with CD3/CD28-stimulated autologous T cells. microRNA expression from enriched MDSCs was also identified. Results We observed that MDSC numbers remain significantly elevated in hospitalized sepsis survivors for at least 6 weeks after their infection. However, only MDSCs obtained at and beyond 14 days post-sepsis significantly suppressed T lymphocyte proliferation and IL-2 production. These same MDSCs displayed unique epigenetic (miRNA) expression patterns compared to earlier time points. Conclusions We conclude that in sepsis survivors, immature myeloid cell numbers are increased but the immune suppressive function specific to MDSCs develops over time, and this is associated with a specific epigenome. These findings may explain the chronic and persistent immune suppression seen in these subjects.


2014 ◽  
Vol 96 (5) ◽  
pp. 675-684 ◽  
Author(s):  
Jiongbo Liao ◽  
Xiao Wang ◽  
Yujing Bi ◽  
Bo Shen ◽  
Kun Shao ◽  
...  

2020 ◽  
Vol 522 (3) ◽  
pp. 604-611 ◽  
Author(s):  
Adeleye O. Adeshakin ◽  
Dehong Yan ◽  
Mengqi Zhang ◽  
Lulu Wang ◽  
Funmilayo O. Adeshakin ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4118-4118
Author(s):  
Kazushi Tanimoto ◽  
Pawel Muranski ◽  
Nancy F. Hensel ◽  
Keyvan Keyvanfar ◽  
Hiroshi Fujiwara ◽  
...  

Abstract Abstract 4118 The human leukemia cell line K562 represents an attractive platform for creating an artificial antigen presenting cell (AAPC): it is readily expandable, does not express HLA class I and II and can be stably transduced with various genes. To generate an AAPC to expand CMV antigen-specific T cells for adoptive immunotherapy, we stably transduced K562 with HLA-A2 in combination with 4-1BB ligand, or CD64 or HLA-DR15. In preliminary experiments, irradiated K562 cells expressing HLA-A2 and 4-1BB ligand pulsed with CMV pp65 and IE-1 HLA-A2 specific peptides failed to elicit antigen-specific CD8+ T cells in HLA-A2+ peripheral blood mononuclear cells (PBMC) or isolated T cells. Since CMV peptides added directly to the PBMC readily expanded antigen-specific CD8+ T cells, we concluded that K562 AAPC inhibited the T cell response. We found that both parental K562 cells and AAPC strongly inhibited T cell proliferation to the bacterial superantigen staphylococcus enterotoxin B (SEB), anti-CD3 stimulation with OKT3, and in MLR. The inhibitory effect of K562 appeared to be T cell specific since K562 cells did not suppress EBV-transformed B cells. Transwell experiments demonstrated preservation of the inhibition, suggesting that suppression was mediated by a soluble factor. MLR inhibition was not reversed by neutralizing anti-TGFβ antibody or PGE2 inhibitors. Finally, the full abrogation of the suppressive activity of K562 was achieved by a brief fixation of cells with formaldehyde at concentrations as low as 0.1%: The MLR was restored when K562 was fixed, and donor T cell response to SEB- and OKT3-loaded K562 AAPC was significantly higher when using fixed K562 cells compared to unfixed cells. Moreover, fixed pp65 and IE-1 peptide-loaded HLA A2+ AAPC expressing 4-1BB ligand induced robust (3–5 fold improved) expansion of CMV-specific T cells from all tested HLA-A2+ donors when compared with irradiated AAPC control. Thus, fixed K562 cell constructs efficiently presented antigen and stimulated T cells. Overall, we demonstrate that K562 line can serve as a source of AAPC for cell therapy approaches after abrogation of their suppressive activity using formaldehyde. However, our results also revealed a previously unappreciated feature of K562 biology, clearly indicating that these commonly used cells are potent inhibitors of peptide antigen-, superantigen-, and OKT3- driven T cell proliferation. Thus K562 line displays a myeloid-derived suppressor cell-like functionality. Our findings have implications for broader understanding of the immune evasion mechanisms used by leukemias and other tumors. Disclosures: No relevant conflicts of interest to declare.


2015 ◽  
Vol 113 (05) ◽  
pp. 1021-1034 ◽  
Author(s):  
Hai Zhou ◽  
Yu Hou ◽  
Xuena Liu ◽  
Jihua Qiu ◽  
Qi Feng ◽  
...  

SummaryImpaired megakaryocyte maturation and insufficient platelet production have been shown to participate in the pathogenesis of immune thrombocytopenia (ITP). Our previous study demonstrated that low expression of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) in megakaryocytes contributed to impaired platelet production in ITP. Decitabine (DAC), a demethylating agent, is known to promote cell differentiation and maturation at low doses. However, whether decitabine is potential in promoting megakaryocyte maturation and platelet release in ITP is unclear. In this study, we evaluated the effect of DAC on megakaryocyte maturation and platelet release in the presence of ITP plasma that has been shown to cause impaired megakaryocyte maturation and platelet production. We observed that low-dose DAC (10 nM) could significantly increase the number of mature polyploid (≥ 4N) megakaryocytes in cultures with plasma from healthy controls and more than one-half of ITP patients in vitro. Furthermore, the number of platelets released from these megakaryocytes significantly increased compared with those untreated with DAC. In these megakaryocytes, DAC significantly enhanced TRAIL expression via decreasing its promoter methylation status. These findings demonstrate that low-dose DAC can promote megakaryocyte maturation and platelet production and enhance TRAIL expression in megakaryocytes in healthy controls and ITP. The potential therapeutic role of low-dose DAC may be beneficial for thrombocytopenic disorders.H. Z. and Y. H. contributed equally to this work.


2021 ◽  
Vol 10 (1) ◽  
pp. 204-214
Author(s):  
Tianying Yang ◽  
Jiawei Li ◽  
Yichen Jia ◽  
Chunchen Yang ◽  
Ruirui Sang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document