scholarly journals Targeting BTN2A1 By a Unique Activating Mab Improves Vγ9Vδ2 T Cell Cytotoxicity Against Primary Acute Lymphoblastic Blasts

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2302-2302
Author(s):  
Anne-Charlotte Le Floch ◽  
Caroline Imbert ◽  
Aude De Gassart ◽  
Florence Orlanducci ◽  
Aude Le Roy ◽  
...  

Abstract Introduction Vγ9Vδ2 T cells are new promising cytotoxic effectors in hematological malignancies. In acute myeloid leukemia and in non-Hodgkin lymphomas, Vγ9Vδ2 T cells-based immunotherapy has shown encouraging results both in preclinical models and in early phase clinical trials. Acute lymphoblastic leukemia (ALL) includes very heterogeneous clinico-biological entities, for which recent immunotherapy approaches are currently being developed. Nevertheless, global prognosis of ALL patients still be poor with a 5 years-overall survival of less than 40% and therefore, treatments need to be improved. Very few data are currently available on susceptibility of ALL blasts to Vγ9Vδ2 T cell cytotoxic activity. Vγ9Vδ2 T cells are activated by phosphoantigens bound to BTN3A1 on target cells. BTN3A molecules are targeted at clinical level, with the ICT01 agonist monoclonal antibody (mAb), that is currently tested in a multicentric phase ½ study (EVICTION study). Biology of Vγ9Vδ2 T cells has recently undergone a new paradigm with the identification of BTN2A1 as the direct ligand for Vγ9 chain of γδ TCR. BTN2A1 is mandatory for Vγ9Vδ2 T cell activation but its precise role in modulating functions of Vγ9Vδ2 T cells remains unknown. Here, we show that allogenic and autologous Vγ9Vδ2 T cells exert cytolytic functions against ALL cell lines and primary ALL blasts, and we report that Vγ9Vδ2 T cell cytotoxic activity is enhanced after treatment with a unique agonist mAb targeting BTN2A1. Material and methods 5 ALL cell lines (697, RS4;11, NALM-6, HPB-ALL, SUP-T1) and PBMC from 11 adults ALL patients at diagnosis (B-ALL, T-ALL and Ph+ ALL) were tested in functional assays. We evaluated apoptosis of ALL cell lines and of primary ALL blasts after coculture with allogenic Vγ9Vδ2 T cells. ALL samples were also tested for their expansion capacities and a degranulation assay was performed at D14. We assessed in parallel relative quantification of the level expression of BTN2A1 (ICT0302 and 7.48 epitopes), and BTN3A (20.1 and 108.5 epitopes) on surface of ALL blasts. DAUDI-BTN2AKO+2A1 and HEK293-BTN2AKO+2A1 cells were used in binding assays, and modulation of TCR binding was assessed using recombinant tetramerized Vγ9Vδ2 TCR. Results We showed that Vγ9Vδ2 T cells exert spontaneous cytotoxicity against ALL cell lines and primary ALL blasts with a heterogeneous susceptibility depending on the target. We demonstrated that anti-BTN2A1 ICT0302 agonist mAb significantly enhanced Vγ9Vδ2 T cells mediated apoptosis in comparison to control condition, even for the less spontaneously susceptible cells. We confirmed these observations with degranulation of autologous Vγ9Vδ2 T cells expanded from 5 ALL patients at diagnosis that was increased after treatment with anti-BTN2A1 ICT0302 agonist mAb. BTN3A and BTN2A1 were detected on surface of ALL blasts, and BTN3A 108.5 was the most expressed epitope. Interestingly, we observed that anti-BTN2A1 ICT0302 strongly increased binding of a recombinant Vγ9Vδ2 TCR to target cells using with HEK293 and DAUDI cells. Discussion Our results highlighted that Vγ9Vδ2 T cells exert cytolytic functions against ALL cells, both in allogenic and autologous setting and demonstrated that BTN2A1 targeting with our unique agonist mAb could potentiate effector activities of Vγ9Vδ2 T cells against ALL blasts. These results indicate that the sensitization of leukemic cells can be induced by activation BTN3A as well as BTN2A1 mAbs. These data bring novel understanding on the biology of BTN2A1 on leukemic cells and our ability to enhance both binding and function. These findings could be of great interest for the design of innovative Vγ9Vδ2 T cells-based immunotherapy strategies for treating ALL that could be extended to other cancer types. Disclosures De Gassart: ImCheck Therapeutics: Current Employment, Current holder of individual stocks in a privately-held company. Vey: Amgen: Honoraria; BMS: Honoraria; BIOKINESIS: Consultancy, Research Funding; NOVARTIS: Consultancy, Honoraria, Research Funding; SERVIER: Consultancy; JAZZ PHARMACEUTICALS: Honoraria; JANSSEN: Consultancy. Cano: ImCheck Therapeutics: Current Employment, Current holder of individual stocks in a privately-held company. Olive: Emergence Therapeutics: Current holder of individual stocks in a privately-held company, Membership on an entity's Board of Directors or advisory committees; Alderaan Biotechnology: Current holder of individual stocks in a privately-held company, Membership on an entity's Board of Directors or advisory committees; ImCheck Therapeutics: Current holder of individual stocks in a privately-held company, Membership on an entity's Board of Directors or advisory committees. OffLabel Disclosure: Anti-BTN2A1 ICT0302 is a murine agonist monoclonal antibody targeting BTN2A1 whose aim is to increase Vgamma9Vdelta2 T cells functions.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1318-1318
Author(s):  
Dipabarna Bhattacharya ◽  
Jani Huuhtanen ◽  
Matti Kankainen ◽  
Tapio Lönnberg ◽  
Cassandra M Kerr ◽  
...  

Abstract Background: T-cell large granular lymphocytic leukemia (T-LGLL), a rare lymphoproliferative disorder of mature T cells, is characterized by the accumulation of activated effector T cells leading to a clonally restricted T-cell receptor (TCR) repertoire. Chronic antigen stimulation together with activating somatic STAT3 mutations have been proposed to lead to clonal expansion of leukemic cells. However, no holistic research has been done to show how leukemic and non-leukemic cells liaise to sustain abnormal immune reactivity in T-LGLL. Methods: We investigated the transcriptome and TCR repertoire in T-LGLL using: 1) single-cell RNA and TCR (scRNA+TCRαβ) sequencing from CD45+ sorted blood cells (T-LGLL n=11, healthy n=6), 2) TCRβ sequencing from blood mononuclear cells (T-LGLL n=48, healthy n=823), 3) bulk RNA sequencing (T-LGLL n=15, healthy n=5), 4) plasma cytokine profiling (T-LGLL n=9, healthy n=9), and 5) flow cytometry validations (T-LGLL n=6, healthy n=6) (Figure) Results: ScRNA+TCRαβ-seq data revealed that in healthy controls, hyperexpanded CD8+ T-cell clones (at least 10 cells with identical TCRs) preferentially had an effector memory phenotype, whereas in T-LGLL, the hyperexpanded clonotypes represented a more cytotoxic (increased expression of GZMB, PRF1, KLRB1) and exhausted (LAG3 and TIGIT) phenotype. Using flow cytometry, we confirmed that upon anti-CD3/CD28/CD49 antibody stimulation, T-LGLL clones (CD8+CD57+) expressed higher levels of cytotoxic proteins (GZMA /GZMB , PRF1) but were deficient in degranulation responses and cytokine secretion as measured by expression of CD107a/b and TNFα/IFNγ, respectively. Focused re-clustering of the extracted T-LGLL clones from the scRNA+TCRαβ-seq data revealed considerable heterogeneity among the T-LGLL clones and partly separated the mutated (mt) STAT3 and wild type (wt) STAT3 clones. STAT3wt clones upregulated T-cell activation and TCR signaling pathways, with a higher cytotoxicity and lower exhaustion score as compared to STAT3mt clones. This was validated with bulk RNA-seq data. To understand the antigen specificities of the T-LGLL clones, we combined previously profiled T-LGLL TCRs with our data to form the largest described dataset of 200 T-LGLL clones from 170 patients. Notably, T-LGLL clones were found to be private to each patient. Furthermore, the analysis by GLIPH2 algorithm grouping TCRs did not reveal detectable structural similarities, suggesting the absence of a unifying antigen in T-LGLL. However, in 67% of T-LGLL patients, the TCRs of leukemic clones shared amino acid level similarities with the rest of the non-leukemic TCR repertoire suggesting that the clonal and non-clonal immune repertoires are connected via common target antigens. To analyze the non-clonal immune repertoire in T-LGLL in detail, we compared our data to other published scRNAseq data from solid tumors (n=4) and hematologic cancers (n=8) and healthy controls (n=6). The analysis revealed that in T-LGLL also the non-leukemic CD8+ and CD4+ T cells were more mature, cytotoxic, and clonally restricted. When compared to healthy controls and other cancer patients, in non-leukemic T-LGLL the most upregulated pathway was IFNγ response. Finally, most of the upregulated cytokines in T-LGLL (e.g., CCL2/3/7, CXCL10/11, IL15RA) were secreted predominantly by monocytes and dendritic cells, which also had upregulated HLA class II expression and enhanced scavenging potential in T-LGLL patients. Ligand-receptor analysis with CellPhoneDB revealed that the number of predicted cell-cell interactions was significantly higher in T-LGLL as compared to reactive T-cell clones in healthy controls. The most co-stimulatory interactions (e.g., CD2-CD58, TNFSF14-TNFRSF14) occurred between the IFNγ secreting T-LGLL clones and the pro-inflammatory cytokine secreting monocytes. Conclusions: Our study shows a synergistic interplay between the leukemic and non-leukemic immune cell repertoires in T-LGLL, where an aberrant antigen-driven immune response including hyperexpanded CD8+ T-LGLL cells, non-leukemic CD8+ cells, CD4+ cells, and monocytes contribute to the persistence of the T-LGLL clones. Our results provide a rationale to prioritize therapies that target the entire immune repertoire and not only the T-LGLL clones in patients with T-LGLL. Figure 1 Figure 1. Disclosures Loughran: Kymera Therapeutics: Membership on an entity's Board of Directors or advisory committees; Bioniz Therapeutics: Membership on an entity's Board of Directors or advisory committees; Keystone Nano: Membership on an entity's Board of Directors or advisory committees; Dren Bio: Membership on an entity's Board of Directors or advisory committees. Maciejewski: Alexion: Consultancy; Novartis: Consultancy; Regeneron: Consultancy; Bristol Myers Squibb/Celgene: Consultancy. Mustjoki: Novartis: Research Funding; BMS: Research Funding; Janpix: Research Funding; Pfizer: Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 790-790
Author(s):  
Florent Amatore ◽  
Nicolas Ortonne ◽  
Marc Lopez ◽  
Mathilde Barré ◽  
Florence Orlanducci ◽  
...  

Abstract Background: Advanced cutaneous T-cell lymphomas (CTCLs) remain an unmet medical need. Brentuximab vedotin (BV), an anti-CD30 antibody-drug conjugate (ADC) linked to monomethyl auristatin E (MMAE), do not deliver significant long-term improvements in patient outcomes. More recently, mogamulizumab and anti-KIR3DL2 provided encouraging results but new targeted therapies are needed. Inducible Co-Stimulator (ICOS), a T-cell costimulatory receptor involved in the development of CTCLs, arouses interest. Methods: We used immunohistochemistry to study ICOS expression in skin biopsies of 23 patients with early-stage mycosis fungoides (MF), 12 with transformed MF (TMF) and 17 with Sézary Syndrome (SS), at diagnosis or in relapse. Skin samples from 12 patients with B-cell lymphomas, 14 with CD30 + lymphoproliferative disease (LPD), 12 with primary cutaneous CD4+ small/medium T-cell lympho-proliferative disorder and 13 with angioimmunoblastic T-cell lymphoma (AITL) were used as controls. ICOS expression by circulating Sézary cells and regulatory T cells (Tregs) in patients with SS was evaluated using flow cytometry and compared to healthy donors (HD) lymphocytes. In 5 patients with SS, we also analyzed concomitant biopsies from involved nodes. Then, we investigated the efficacy of anti-ICOS ADCs generated by coupling murine anti-ICOS 314.8 monoclonal antibodies with MMAE and pyrrolobenzodiazepine (PBD), in comparison to BV. We used ICOS + CTCL cell lines (MyLa, MJ and HUT78), murine xenograft models with MyLa and ICOS + Patient Derived Xenografts (PDXs) from patients with SS and AITL. In order to identify the best anti-ICOS clone that we should develop for a clinical trial, we evaluated the affinity of the antibody on the receptor, the internalization capacity of the antibody using pHAb Reactive Dyes kit (Promega®), and the ability of the antibody to act as an ADC using a secondary conjugate (Mab-ZAP kit, Advanced Targeting Systems®). Results: ICOS was highly expressed by the cutaneous atypical lymphocytic infiltrates in respectively 61%, 75% and 88% of patients with early-stage MF, TMF and SS, such as in all the involved nodes. Double staining experiments which were performed in both skin and lymph node revealed that ICOS expression appears mainly restricted to neoplastic CD4 + T-cells, with rare ICOS +CD8 + T-cells in the tumor micro-environment. ICOS expression by circulating Sézary cells was strong: 69 ± 7.3% versus 38.8 ± 7.1% of non-tumoral CD4 + cells (p<0.009; CI95%: 8.7-51.6); and 31 ± 3.2% of CD4+ cells in HD (p<0.0001; CI95%: 20.3-46.3). Percentages of ICOS + Tregs were significantly higher in patients with SS than in HD. In CTCL cell lines, we observed a significant dose-dependent decrease in cell viability in the presence of anti-ICOS-MMAE (IC50 = 8.2ng/mL) and anti-ICOS-PBD (IC50 = 1.2ng/mL) ADCs. In a mouse xenograft model (MyLa), anti-ICOS-MMAE ADCs provided a longer overall survival (OS) than BV (HR=15.2; CI95%: 3.2-71.1; p<0.0006). Finally, in ICOS + PDXs, anti-ICOS-MMAE ADCs significantly improved OS, and reduced the number of tumor cells in the blood, spleen, and bone marrow. No evidence of ADC toxicity was observed in treated mice. Among 8 different anti-ICOS clones, clone 314.8 had the best affinity on MyLa and MJ cell lines. Clones 53.3, 293.1, 92.17, 88.2 and 279.1 also had good affinity to receptor, whereas clones 145.1 and 121.4 had poor affinity. Using the internalization pHAb reactive dyes kit, we found that clones 314.8, 53.3, 92.17, 88.2 internalized significantly better and faster than the other ones. In order to verify if there is a correlation between internalization capacity and ADC effect, clones 53.3, 92.17 and 145.1 were coupled to MMAE. While anti-ICOS-53.3 and anti-ICOS-92.17 ADCs had similar efficacy to anti-ICOS-314.8 ADCs on MyLa, anti-ICOS 145.1 ADCs resulted in significantly lower cell death. Finally, all clones showed good ability to act as ADCs with Mab-ZAP, excluding clones 279.1, 145.1 and 121.4. Discussion: ICOS is a promising therapeutic target because it is expressed both by tumor T-cells and regulatory T-cells. We report for the first time the strong and frequent expression of ICOS in CTCLs, as well as the preclinical efficacy of anti-ICOS ADCs on CTCL cell line and PDXs. These results could be extended to the spectrum of follicular variant peripheral T-cell lymphomas. Conclusion: Collectively, our findings provide the preliminary basis for a therapeutic trial Figure 1 Figure 1. Disclosures Lopez: Emergence Therapeutics: Current holder of individual stocks in a privately-held company. Bagot: Takeda: Membership on an entity's Board of Directors or advisory committees. Olive: ImCheck Therapeutics: Current holder of individual stocks in a privately-held company, Membership on an entity's Board of Directors or advisory committees; Emergence Therapeutics: Current holder of individual stocks in a privately-held company, Membership on an entity's Board of Directors or advisory committees; Alderaan Biotechnology: Current holder of individual stocks in a privately-held company, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1349-1349
Author(s):  
Anetta Marcinek ◽  
Bettina Brauchle ◽  
Dragica Udiljak ◽  
Roman Kischel ◽  
Peter Kufer ◽  
...  

Abstract Bispecific T-cell engagers (BiTE® antibody constructs) represent a novel immunotherapeutic strategy relying on the recruitment of T cells against tumor cells independent of TCR specificity. In Acute Myeloid Leukemia (AML), CD33 represents a suitable target antigen with high expression levels in >90 % of primary AML samples (Krupka et al, 2014). A CD33-BiTE® antibody construct (AMG 330) was developed mediating cytotoxicity against primary AML in vitro although to a variable degree (Krupka et al, 2016). Several parameters have been identified which modulate AMG 330-mediated cytotoxicity, including CD33 expression level as well as effector to target cell (E:T) ratio. However, the exact mechanism of T-cell activation through BiTE® antibody constructs is only partly understood. Physiological T-cell activation is based on engagement of the T-cell receptor complex together with costimulatory molecules whereas the absence of positive costimulation leads to T-cell anergy. In line with this concept, we hypothesized that BiTE®-mediated cytotoxicity requires positive costimulatory signals on the target cells for T-cell activation. We hypothesize that the ratio of costimulatory and coinhibitory molecules on AML cells determines the susceptibility to AMG 330-mediated cytotoxicity independent of target antigen expression level. A stable expression system was established utilizing murine Ba/F3 cells expressing human CD33 ± CD80 ± CD86 ± PD-L1. Co-cultures of Ba/F3 constructs and T cells were performed in presence of AMG 330 or a control BiTE® (cBiTE®) (5 ng/ml). For some experiments, T cells were separated into naive (CD45RA+/CCR7+) vs memory (CD45RADIM) cells using fluorescence-activated cell sorting. After 3 days, specific lysis was determined by flow cytometry and calculated as % specific lysis = 100 × (1 - live CD33+ cellsAMG 330 / live CD33+ cellscBiTE). T-cell proliferation was defined as number of CD2+ cells on day 3 compared to day 0. The expression pattern of CD33, CD80, CD86 and PD-L1 on primary AML cells was evaluated by specific fluorescence intensity (SFI) using multiparameter flow cytometry. A sample was considered positive at an SFI of > 1.5. Characterized primary AML patient samples were used in a long-term culture assay to determine the influence of the checkpoint molecule expression profile on AMG 330-mediated cytotoxicity. CD33 single positive Ba/F3 cells were not lysed upon the addition of AMG 330 and allogeneic T cells. Cytotoxicity could be restored by expression of CD80, CD86 and CD80+CD86 with following tendency: CD80+CD86 >> CD80 > CD86 (see table 1). There was a direct correlation of T-cell proliferation to AMG 330 mediated cytotoxicity. Memory T cells showed increased cytotoxicity compared to naive T cells against the different Ba/F3 cell lines. The influence of co-inhibition was investigated by additionally transducing PD-L1 into the different Ba/F3 cells. This led to a reduced AMG 330-mediated cytotoxicity in all PD-L1 expressing Ba/F3 cells (Table 1). This was accompanied by a reduction in T-cell proliferation. Looking at the expression profile of CD80 and CD86 in primary AML samples, we observed expression of CD80 in 7/123 and of CD86 in 188/226 of cases (respectively 5.7 % and 83.2 %). When comparing AMG 330-mediated cytotoxicity against primary AML cells for patient pairs with similar CD33 expression levels, a higher CD86/PD-L1 ratio led to an increased AMG 330-mediated cytotoxicity compared to patient samples with a lower CD86/PD-L1 ratio (exemplary data: SFI CD33+: 81.7; SFI-ratio CD86/PD-L1: 4; specific cytotoxicity: 64.2 % vs. SFI CD33+: 89.5; SFI-ratio CD86/PD-L1: 15.9; specific cytotoxicity: 96.4 %). In summary, this data supports the hypothesis that AMG 330-mediated cytotoxicity and T-cell proliferation are influenced by the ratio of costimulatory and coinhibitory molecules on AML cells. Our data supports the notion that the checkpoint profile on AML, rather than one molecule by itself, determines T-cell response to AMG 330. Prospective analyses in clinical trials are needed to validate the relevance of checkpoint molecules on target cells as a predictive biomarker for response. Disclosures Marcinek: AMGEN Research Munich: Research Funding. Brauchle:AMGEN Inc.: Research Funding. Kischel:AMGEN: Employment. Kufer:AMGEN Research Munich: Employment. Subklewe:Pfizer: Membership on an entity's Board of Directors or advisory committees; Roche AG: Research Funding; AMGEN: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees; Gilead Sciences: Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 565-565
Author(s):  
Gullu Topal Gorgun ◽  
Gregory Whitehill ◽  
Jennifer Lindsey Anderson ◽  
Teru Hideshima ◽  
Jacob P. Laubach ◽  
...  

Abstract Abstract 565 Background: The interaction of myeloma (MM) cells with bone marrow accessory cells induces genomic, epigenomic and functional changes which promote tumor development, progression, cell adhesion mediated-drug resistance (CAM-DR), and immune suppression. As in other cancers, bidirectional interaction between MM cells and surrounding cells regulates tumor development on the one hand, while transforming the BM microenvironment into a tumor promoting and immune suppressive milieu on the other. Recent developments in targeted therapies have indicated that generation of the most effective therapeutic strategies requires not only targeting tumor or stroma cells, but also methods to overcome blockade of anti-tumor immune responses. In addition to lymphoid immune suppressor cells such as regulatory T cells (Tregs), distinct populations of myeloid cells such as myeloid derived suppressor cells (MDSCs) can effectively block anti-tumor immune responses, thereby representing an important obstacle for immunotherapy. While MDSCs are rare or absent in healthy individuals, increased numbers of MDSCs have been identified in tumor sites and peripheral circulation. Recent studies have in particular focused on MDSCs in the context of tumor promoting, immune suppressing, stroma in solid tumors. However, their presence and role in the tumor promoting, immune suppressive microenvironment in MM remains unclear. Methods: Here we assessed the presence, frequency, and functional characteristics of MDSCs in patients with newly diagnosed or relapsed MM compared to MM patients with response and healthy donors. We first identified a distinct MDSC population (CD11b+CD14−HLA-DR-/lowCD33+CD15+) with tumor promoting and immune suppressive activity in both PB and BM of MM patients. Moreover, we determined the immunomodulatory effects of lenalidomide and bortezomib on induction of MDSCs by MM cells, as well as on MDSC function. Results: MDSCs were significantly increased in both PB and BM of patients with active MM compared to healthy donors and MM in response (p<0.01). To determine whether the CD11b+CD14−HLA-DR-/lowCD33+CD15+ myeloid cell population represents functional MDSCs, we first assessed tumor promoting role of MDSCs in the MM microenvironment by culturing MM cell lines with MM patient bone marrow stroma cells (BMSC), with or without depletion of MDSCs. Importantly, BMSC-mediated MM growth decreased to baseline levels of MM cells alone when MDSCs were removed from the BMSC microenvironment. Moreover, MDSCs isolated from MM-BM using magnetic-Ab and/or FACS sorting cell separation, directly induced MM cell growth and survival, evidenced by 3H-thymidine incorporation and MTT assays. Since the interaction between tumor and stromal accessory cells is bidirectional, we next analysed the impact of MM cells on MDSC development. Importantly, MM cell lines cultured with PBMCs from healthy donors induced a 7 fold increase in MDSCs. We also examined the immune suppressive functions of MDSCs in cultures of autologous T cells with T cell stimulators, in the presence and absence of MDSCs from MM-PB or MM-BM. Freshly isolated MDSCs from both MM-PB and MM-BM induced significant inhibition of autologous T cell proliferation. Moreover, MDSC-associated immune inhibitory molecules arginase-1 (ARG-1) and reactive oxygen species (ROS), as well as inhibitory cytokines IL-6 and IL-10, were significantly increased in BM MDSCs, evidenced by intracellular flow cytometry analysis. In addition, MM BM MDSCs induced development of Treg from autologous naïve CD4+T cells. Finally, we analysed whether MDSCs impacted response to bortezomib and lenalidomide. Culture of MDSCs with MM cell lines, with or without bortezomib (5nM) and lenalidomide (1uM), demonstrated that less MM cell cytotoxicity in the presence of MDSCs. Conclusions: Our data show that MDSCs are increased in the MM microenvironment and mediate tumor growth and drug resistance, as well as immune suppression. Therefore targeting MDSCs represents a promising novel immune-based therapeutic strategy to both inhibit tumor cell growth and restore host immune function in MM. Disclosures: Raje: Onyx: Consultancy; Celgene: Consultancy; Millennium: Consultancy; Acetylon: Research Funding; Amgen: Research Funding; Eli-Lilly: Research Funding. Munshi:Celgene: Consultancy; Millenium: Consultancy; Merck: Consultancy; Onyx: Consultancy. Richardson:Novartis: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees; Johnson & Johnson: Membership on an entity's Board of Directors or advisory committees. Anderson:Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees; Onyx: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2204-2204
Author(s):  
Concetta Quintarelli ◽  
Iolanda Boffa ◽  
Matilde Sinibaldi ◽  
Domenico Orlando ◽  
Marika Guercio ◽  
...  

Abstract In view of the exciting results reported in patients with CD19+ malignancies given CAR T cells, it is expected that a continuously growing number of patients will be offered this treatment and, thus, will be exposed to gene-modified products. Since the techniques of gene manipulation are relatively new, some of the risks associated to CAR T therapy may be unpredictable. Recently, two patients who relapsed with CD19-, CAR-expressing leukemia were reported, this observation being interpretable in light of an inadvertent leukemic cell transduction with the second generation CAR.CD19 lentivirus during CAR T cell manufacturing (Lacey, ASH, 2016 128:281). Immunoglobulin heavy chain sequencing analysis of 17 additional infusion products also identified the leukemic clonotypes in six additional products (86%). In vitro and in vivo experiments proved that these CAR+ leukemic clones were not killed by CAR.CD19 T cells (Ruella, ASH, 2017 130:4463). Since lentiviruses proved to be superior for transduction of quiescent hematopietic stem cells due to their ability to infect non-dividing cells, we hypothesized that CAR-T cell manufacturing based on the genetic modification of T cells by gammaretroviral vector could theoretically represent a safe approach. Peripheral blood or bone marrow (BM)-derived mononuclear cells of patients with >40% of blasts at diagnosis (CD45dim+/CD34+/CD19+/CD22+/CD10+), were transduced with a retrovirus encoding for a second generation CAR.CD19.41bb.z in frame with a suicide gene (i.e., inducible caspase 9, iC9) employed in the academic Clinical Trial (NCT03373071) run at the Bambino Gesù Children's Hospital, Rome, Italy. Patient-derived CAR-T cells showed a phenotype not significantly different from that found on CAR-T cells generated by healthy-donors (data not shown). In particular, we demonstrated that both flow-cytofluorimetry and RealTime-quantitative PCR (with a sensitivity up to 10-5) failed to identify leukemic cells in the final CAR-T cell products generated from Bcp-ALL patients. To generate an in vitro model of CAR+ leukemic cells, we genetically modified CD19+ RAJI and DAUDI cell lines with the bicistronic retroviral vector carrying both second generation CAR.CD19 and the suicide gene iC9 (iC9.CAR-RAJI and iC9.CAR-DAUDI). We demonstrated the possibility of promptlyeliminating CAR+ leukemic cells, through exposure to 20nM of AP1903 of iC9.CAR-DAUDI and iC9.CAR-RAJI cells. Indeed, very early activation (6 hours) of the suicide gene iC9 resulted into a significant reduction in the percentage of CAR+ RAJI leukemic cells (Fig.A). The presence of iC9.CAR.CD19 molecule on leukemic cells precluded the detection of the CD19 antigen, whereas cells retain the expression of all other specific B-lineage markers. CD19 antigen started to be detectable 72 hours after AP1903 exposurewhen CAR negative leukemic cells become preponderant. To demonstrate that CD19 antigen was not down-regulated, but only masked by CAR molecule in iC9.CAR-RAJI and iC9.CAR-DAUDI cell lines, we measured CD19 mRNA, showing no significant modification with respect to wild-type (WT) RAJI and DAUDI cell lines. Moreover, iC9.CAR-RAJI and iC9.CAR-DAUDI cell lines were effectively eliminated by CAR.CD19 T cells (12.5±13.7% and 3.4±4.3% residualleukaemia, respectively) at the same extent of WT cell line (0% and 0.08±0.1%, residual leukaemia, respectively; p>0.05 Fig.B). To assess if patient-derived iC9.CAR.CD19 T cells were able to generate leukemia in vivo mouse model, NSG female mice were infused i.v. with 10x106 CAR-T cells and control NT-T cells. Mice were monitored for a total period of 250 days, by recurrent bleed. Simultaneously, another cohort of mice was infused with patient-derived BM cells (5x106) and monitored for the same time. Mice infused with Bcp-ALL BM cells developed leukemia-phenotype,with 82% of cells expressing hCD45dim and hCD19. By contrast, mice receiving patient-derived CAR-T cells showed a lowpercentage of CD45+ cells (0.1±0.01%), all CD3+. Despite the long period of observation, we did not detect any expansion of hCD19+ cells in this animal cohort. Taken together these data suggest that the use of a retroviral platform, associated with the presence of iC9 suicide gene, contributes to the genesis of a highly functional and safe CAR-T product, even when the production starts from a biological material characterized by high contamination of leukemic blasts. Disclosures Locatelli: Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Miltenyi: Honoraria; bluebird bio: Consultancy; Bellicum: Consultancy, Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 776-776
Author(s):  
Claire Roddie ◽  
Maeve A O'Reilly ◽  
Maria A V Marzolini ◽  
Leigh Wood ◽  
Juliana Dias Alves Pinto ◽  
...  

Introduction: 2nd generation CD19 CAR T cells show unprecedented efficacy in B-ALL, but several challenges remain: (1) scaling manufacture to meet patient need and (2) feasibility of generating products from lymphopenic patients post allogeneic stem cell transplant (allo-SCT). To overcome these issues we propose: (1) use of the CliniMACS Prodigy (Miltenyi Biotec), a semi-automated cGMP platform that simplifies CAR T cell manufacture and (2) the use of matched donor T cells to overcome the challenge posed by patient lymphopenia, albeit this may come with a heightened risk of graft versus host disease (GvHD). CARD (NCT02893189) is a Phase I study of matched donor derived CD19 CAR T cells generated on the CliniMACS Prodigy in 14 adult patients with relapsed/refractory (r/r) B ALL following allo-SCT. We additionally explore the requirement for lymphodepletion (LD) in the allogeneic CAR T cell setting and report on the incidence of GvHD with this therapy. Methods: Manufacturing: CARD utilises non-mobilised matched donor leucapheresate to manufacture 2nd generation CD19CAR T cells using a closed CliniMACS® Prodigy/ TransACTTM process. Study design: Eligible subjects are aged 16-70y with r/r B ALL following allo SCT. Study endpoints include feasibility of CD19CAR T cell manufacture from allo-SCT donors on the CliniMACS Prodigy and assessments of engraftment and safety including GvHD. To assess the requirement for LD prior to CD19CAR T cells in lymphopenic post-allo-SCT patients, the study is split into Cohort 1 (no LD) and Cohort 2 (fludarabine (30 mg/m2 x3) and cyclophosphamide (300mg/m2 x3)). To mitigate for the potential GvHD risk, cell dosing on study mirrors conventional donor lymphocyte infusion (DLI) schedules and is based on total CD3+ (not CAR T) cell numbers: Dose 1=1x106/kg CD3+ T cells; Dose 2= 3x106/kg CD3+ T cells; Dose 3= 1x107/kg CD3+ T cells. Results: As of 26 July 2019, 17 matched allo SCT donors were leukapheresed and 16 products were successfully manufactured and QP released. Patient demographics are as follows: (1) median patient age was 43y (range 19-64y); (2) 4/17 had prior blinatumomab and 5/17 prior inotuzumab ozogamicin; (3) 7/17 had myeloablative allo SCT and 10/17 reduced intensity allo SCT of which 6/17 were sibling donors and 12/17 were matched unrelated donors. No patients with haploidentical transplant were enrolled. To date, 12/16 patients have received at least 1 dose of CD19CAR T cells: 7/16 on Cohort 1 and 5/16 on Cohort 2 (2/16 are pending infusion on Cohort 2 and 2/16 died of fungal infection prior to infusion). Median follow-up for all 12 patients is 22.9 months (IQR 2.9-25.9; range 0.7 - 25.9). At the time of CAR T cell infusion, 7/12 patients were in morphological relapse with &gt;5% leukemic blasts. Despite this, CD19CAR T cells were administered safely: only 2/12 patients experienced Grade 3 CRS (UPenn criteria), both in Cohort 1, which fully resolved with Tocilizumab and corticosteroids. No patients experienced ≥Grade 3 neurotoxicity and importantly, no patients experienced clinically significant GvHD. In Cohort 1 (7 patients), median peak CAR expansion by flow was 87 CD19CAR/uL blood whereas in Cohort 2 (5 patients to date), median peak CAR expansion was 1309 CD19CAR/uL blood. This difference is likely to reflect the use of LD in Cohort 2. CAR T cell persistence by qPCR in Cohort 1 is short, with demonstrable CAR in only 2/7 treated patients at Month 2. Data for Cohort 2 is immature, but this will also be reported at the meeting in addition to potential mechanisms underlying the short persistence observed in Cohort 1. Of the 10 response evaluable patients (2/12 pending marrow assessment), 9/10 (90%) achieved flow/molecular MRD negative CR at 6 weeks. 2/9 responders experienced CD19 negative relapse (one at M3, one at M5) and 3/9 responders experienced CD19+ relapse (one at M3, one at M9, one at M12). 4/10 (40%) response evaluable patients remain on study and continue in flow/molecular MRD negative remission at a median follow up of 11.9 months (range 2.9-25.9). Conclusions: Donor-derived matched allogeneic CD19 CAR T cells are straightforward to manufacture using the CliniMACS Prodigy and deliver excellent early remission rates, with 90% MRD negative CR observed at Week 6 in the absence of severe CAR associated toxicity or GvHD. Peak CAR expansion appears to be compromised by the absence of LD and this may lead to a higher relapse rate. Updated results from Cohorts 1 and 2 will be presented. Disclosures Roddie: Novartis: Consultancy; Gilead: Consultancy, Speakers Bureau; Celgene: Consultancy, Speakers Bureau. O'Reilly:Kite Gilead: Honoraria. Farzaneh:Autolus Ltd: Equity Ownership, Research Funding. Qasim:Autolus: Equity Ownership; Orchard Therapeutics: Equity Ownership; UCLB: Other: revenue share eligibility; Servier: Research Funding; Bellicum: Research Funding; CellMedica: Research Funding. Linch:Autolus: Membership on an entity's Board of Directors or advisory committees. Pule:Autolus: Membership on an entity's Board of Directors or advisory committees. Peggs:Gilead: Consultancy, Speakers Bureau; Autolus: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 779-779 ◽  
Author(s):  
Zinaida Good ◽  
Jay Y. Spiegel ◽  
Bita Sahaf ◽  
Meena B. Malipatlolla ◽  
Matthew J. Frank ◽  
...  

Axicabtagene ciloleucel (Axi-cel) is an autologous anti-CD19 chimeric antigen receptor (CAR) T-cell therapy approved for the treatment of relapsed or refractory diffuse large B-cell lymphoma (r/r DLBCL). Long-term analysis of the ZUMA-1 phase 1-2 clinical trial showed that ~40% of Axi-cel patients remained progression-free at 2 years (Locke et al., Lancet Oncology 2019). Those patients who achieved a complete response (CR) at 6 months generally remained progression-free long-term. The biological basis for achieving a durable CR in patients receiving Axi-cel remains poorly understood. Here, we sought to identify CAR T-cell intrinsic features associated with CR at 6 months in DLBCL patients receiving commercial Axi-cel at our institution. Using mass cytometry, we assessed expression of 33 surface or intracellular proteins relevant to T-cell function on blood collected before CAR T cell infusion, on day 7 (peak expansion), and on day 21 (late expansion) post-infusion. To identify cell features that distinguish patients with durable CR (n = 11) from those who developed progressive disease (PD, n = 14) by 6 months following Axi-cel infusion, we performed differential abundance analysis of multiparametric protein expression on CAR T cells. This unsupervised analysis identified populations on day 7 associated with persistent CR or PD at 6 months. Using 10-fold cross-validation, we next fitted a least absolute shrinkage and selection operator (lasso) model that identified two clusters of CD4+ CAR T cells on day 7 as potentially predictive of clinical outcome. The first cluster identified by our model was associated with CR at 6 months and had high expression of CD45RO, CD57, PD1, and T-bet transcription factor. Analysis of protein co-expression in this cluster enabled us to define a simple gating scheme based on high expression of CD57 and T-bet, which captured a population of CD4+ CAR T cells on day 7 with greater expansion in patients experiencing a durable CR (mean±s.e.m. CR: 26.13%±2.59%, PD: 10.99%±2.53%, P = 0.0014). In contrast, the second cluster was associated with PD at 6 months and had high expression of CD25, TIGIT, and Helios transcription factor with no CD57. A CD57-negative Helios-positive gate captured a population of CD4+ CAR T cells was enriched on day 7 in patients who experienced progression (CR: 9.75%±2.70%, PD: 20.93%±3.70%, P = 0.016). Co-expression of CD4, CD25, and Helios on these CAR T cells highlights their similarity to regulatory T cells, which could provide a basis for their detrimental effects. In this exploratory analysis of 25 patients treated with Axi-cel, we identified two populations of CD4+ CAR T cells on day 7 that were highly associated with clinical outcome at 6 months. Ongoing analyses are underway to fully characterize this dataset, to explore the biological activity of the populations identified, and to assess the presence of other populations that may be associated with CAR-T expansion or neurotoxicity. This work demonstrates how multidimensional correlative studies can enhance our understanding of CAR T-cell biology and uncover populations associated with clinical outcome in CAR T cell therapies. This work was supported by the Parker Institute for Cancer Immunotherapy. Figure Disclosures Muffly: Pfizer: Consultancy; Adaptive: Research Funding; KITE: Consultancy. Miklos:Celgene: Membership on an entity's Board of Directors or advisory committees; BMS: Membership on an entity's Board of Directors or advisory committees; Kite-Gilead: Membership on an entity's Board of Directors or advisory committees, Research Funding; AlloGene: Membership on an entity's Board of Directors or advisory committees; Precision Bioscience: Membership on an entity's Board of Directors or advisory committees; Miltenyi Biotech: Membership on an entity's Board of Directors or advisory committees; Becton Dickinson: Research Funding; Adaptive Biotechnologies: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Juno: Membership on an entity's Board of Directors or advisory committees. Mackall:Vor: Other: Scientific Advisory Board; Roche: Other: Scientific Advisory Board; Adaptimmune LLC: Other: Scientific Advisory Board; Glaxo-Smith-Kline: Other: Scientific Advisory Board; Allogene: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Apricity Health: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Unum Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Obsidian: Research Funding; Lyell: Consultancy, Equity Ownership, Other: Founder, Research Funding; Nektar: Other: Scientific Advisory Board; PACT: Other: Scientific Advisory Board; Bryologyx: Other: Scientific Advisory Board.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 196-196
Author(s):  
Bishwas Shrestha ◽  
Kelly Walton ◽  
Jordan Reff ◽  
Elizabeth M. Sagatys ◽  
Nhan Tu ◽  
...  

Distinct from pharmacologic immunosuppression, we designed a programmed cytolytic effector T cell that prevents graft versus host disease (GVHD). CD83 is expressed on allo-activated conventional T cells (Tconv) and pro-inflammatory dendritic cells (DCs), which are implicated in GVHD pathogenesis. Therefore we developed a novel human CD83 targeted chimeric antigen receptor (CAR) T cell for GVHD prophylaxis. Here we demonstrate that human CD83 CAR T cells eradicate cell mediators of GVHD, significantly increase the ratio of regulatory T cells (Treg) to allo-activated Tconv, and provide lasting protection from xenogeneic GVHD. Further, we show human, acute myeloid leukemia (AML) expresses CD83 and can be targeted by CD83 CAR T cells. A 2nd generation CD83 CAR was generated with CD3ζ and 41BB costimulatory domain that was retrovirally transduced in human T cells to generate CD83 CAR T cells. The CD83 CAR construct exhibited a high degree of transduction efficiency of about 60%. The CD83 CAR T cells demonstrated robust IFN-γ and IL-2 production, killing, and proliferation when cultured with CD83+ target cells. To test whether human CD83 CAR T cells reduce alloreactivity in vitro, we investigated their suppressive function in allogeneic mixed leukocyte reactions (alloMLR). CD83 CAR T cells were added to 5-day alloMLRs consisting of autologous T cells and allogeneic monocyte-derived DCs at ratios ranging from 3:1 to 1:10. The CD83 CAR T cells potently reduced alloreactive T cell proliferation compared to mock transduced and CD19 CAR T cells. We identified that CD83 is differentially expressed on alloreactive Tconv, compared to Tregs. Moreover, the CD83 CAR T cell efficiently depletes CD83+ Tconv and proinflammatory DCs with 48 hours of engagement. To test the efficacy of human CD83 CAR T cells in vivo, we used an established xenogeneic GVHD model, where mice were inoculated with human PBMCs (25x106) and autologous CD83 CAR (1-10x106) or mock transduced T cells. The CD83 CAR T cells were well tolerated by the mice, and significantly improved survival compared to mock transduced T cells (Figure 1A). Mice treated with CD83 CAR T cells exhibited negligible GVHD target organ damage at day +21 (Figure 1B). Mice inoculated with CD83 CAR T cells demonstrated significantly fewer CD1c+, CD83+ DCs (1.7x106 v 6.2x105, P=0.002), CD4+, CD83+ T cells (4.8x103 v 5.8x102, P=0.005), and pathogenic Th1 cells (3.1x105 v 1.1x102, P=0.005) at day +21, compared to mice treated with mock transduced T cells. Moreover, the ratio of Treg to alloreactive Tconv (CD25+ non-Treg) was significantly increased among mice treated with CD83 CAR T cells (78 v 346, P=0.02), compared to mice injected with mock transduced T cells. Further, CD83 appears to be a promising candidate to target myeloid malignancies. We observed CD83 expression on malignant myeloid K562, Thp-1, U937, and MOLM-13 cells. Moreover, the CD83 CAR T cells effectively killed AML cell lines. Many AML antigens are expressed on progenitor stem cells. Thus, we evaluated for stem cell killing in human colony forming unit (CFU) assays, which demonstrated negligible on-target, off-tumor toxicity. Therefore, the human CD83 CAR T cell is an innovative cell-based approach to prevent GVHD, while providing direct anti-tumor activity against myeloid malignancies. Figure Disclosures Blazar: Kamon Pharmaceuticals, Inc: Membership on an entity's Board of Directors or advisory committees; Five Prime Therapeutics Inc: Co-Founder, Membership on an entity's Board of Directors or advisory committees; BlueRock Therapeutics: Membership on an entity's Board of Directors or advisory committees; Abbvie Inc: Research Funding; Leukemia and Lymphoma Society: Research Funding; Childrens' Cancer Research Fund: Research Funding; KidsFirst Fund: Research Funding; Tmunity: Other: Co-Founder; Alpine Immune Sciences, Inc.: Research Funding; RXi Pharmaceuticals: Research Funding; Fate Therapeutics, Inc.: Research Funding; Magenta Therapeutics and BlueRock Therapeuetics: Membership on an entity's Board of Directors or advisory committees; Regeneron Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees. Davila:Atara: Research Funding; Celgene: Research Funding; Precision Biosciences: Consultancy; Bellicum: Consultancy; GlaxoSmithKline: Consultancy; Adaptive: Consultancy; Anixa: Consultancy; Novartis: Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 42-43
Author(s):  
Prajish Iyer ◽  
Lu Yang ◽  
Zhi-Zhang Yang ◽  
Charla R. Secreto ◽  
Sutapa Sinha ◽  
...  

Despite recent developments in the therapy of chronic lymphocytic leukemia (CLL), Richter's transformation (RT), an aggressive lymphoma, remains a clinical challenge. Immune checkpoint inhibitor (ICI) therapy has shown promise in selective lymphoma types, however, only 30-40% RT patients respond to anti-PD1 pembrolizumab; while the underlying CLL failed to respond and 10% CLL patients progress rapidly within 2 months of treatment. Studies indicate pre-existing T cells in tumor biopsies are associated with a greater anti-PD1 response, hence we hypothesized that pre-existing T cell subset characteristics and regulation in anti-PD1 responders differed from those who progressed in CLL. We used mass cytometry (CyTOF) to analyze T cell subsets isolated from peripheral blood mononuclear cells (PBMCs) from 19 patients with who received pembrolizumab as a single agent. PBMCs were obtained baseline(pre-therapy) and within 3 months of therapy initiation. Among this cohort, 3 patients had complete or partial response (responders), 2 patients had rapid disease progression (progressors) (Fig. A), and 14 had stable disease (non-responders) within the first 3 months of therapy. CyTOF analysis revealed that Treg subsets in responders as compared with progressors or non-responders (MFI -55 vs.30, p=0.001) at both baseline and post-therapy were increased (Fig. B). This quantitative analysis indicated an existing difference in Tregs and distinct molecular dynamic changes in response to pembrolizumab between responders and progressors. To delineate the T cell characteristics in progressors and responders, we performed single-cell RNA-seq (SC-RNA-seq; 10X Genomics platform) using T (CD3+) cells enriched from PBMCs derived from three patients (1 responder: RS2; 2 progressors: CLL14, CLL17) before and after treatment. A total of ~10000 cells were captured and an average of 1215 genes was detected per cell. Using a clustering approach (Seurat V3.1.5), we identified 7 T cell clusters based on transcriptional signature (Fig.C). Responders had a larger fraction of Tregs (Cluster 5) as compared with progressors (p=0.03, Fig. D), and these Tregs showed an IFN-related gene signature (Fig. E). To determine any changes in the cellular circuitry in Tregs between responders and progressors, we used FOXP3, CD25, and CD127 as markers for Tregs in our SC-RNA-seq data. We saw a greater expression of FOXP3, CD25, CD127, in RS2 in comparison to CLL17 and CLL14. Gene set enrichment analysis (GSEA) revealed the upregulation of genes involved in lymphocyte activation and FOXP3-regulated Treg development-related pathways in the responder's Tregs (Fig.F). Together, the greater expression of genes involved in Treg activation may reduce the suppressive functions of Tregs, which led to the response to anti-PD1 treatment seen in RS2 consistent with Tregs in melanoma. To delineate any state changes in T cells between progressors and responder, we performed trajectory analysis using Monocle (R package tool) and identified enrichment of MYC/TNF/IFNG gene signature in state 1 and an effector T signature in state 3 For RS2 after treatment (p=0.003), indicating pembrolizumab induced proliferative and functional T cell signatures in the responder only. Further, our single-cell results were supported by the T cell receptor (TCR beta) repertoire analysis (Adaptive Biotechnology). As an inverse measure of TCR diversity, productive TCR clonality in CLL14 and CLL17 samples was 0.638 and 0.408 at baseline, respectively. Fifty percent of all peripheral blood T cells were represented by one large TCR clone in CLL14(progressor) suggesting tumor related T-cell clone expansion. In contrast, RS2(responder) contained a profile of diverse T cell clones with a clonality of 0.027 (Fig. H). Pembrolizumab therapy did not change the clonality of the three patients during the treatment course (data not shown). In summary, we identified enriched Treg signatures delineating responders from progressors on pembrolizumab treatment, paradoxical to the current understanding of T cell subsets in solid tumors. However, these data are consistent with the recent observation that the presence of Tregs suggests a better prognosis in Hodgkin lymphoma, Follicular lymphoma, and other hematological malignancies. Figure 1 Disclosures Kay: Pharmacyclics: Membership on an entity's Board of Directors or advisory committees, Research Funding; Oncotracker: Membership on an entity's Board of Directors or advisory committees; Rigel: Membership on an entity's Board of Directors or advisory committees; Juno Theraputics: Membership on an entity's Board of Directors or advisory committees; Agios Pharma: Membership on an entity's Board of Directors or advisory committees; Cytomx: Membership on an entity's Board of Directors or advisory committees; Astra Zeneca: Membership on an entity's Board of Directors or advisory committees; Morpho-sys: Membership on an entity's Board of Directors or advisory committees; Tolero Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol Meyer Squib: Membership on an entity's Board of Directors or advisory committees, Research Funding; Acerta Pharma: Research Funding; Sunesis: Research Funding; Dava Oncology: Membership on an entity's Board of Directors or advisory committees; Abbvie: Research Funding; MEI Pharma: Research Funding. Ansell:AI Therapeutics: Research Funding; Takeda: Research Funding; Trillium: Research Funding; Affimed: Research Funding; Bristol Myers Squibb: Research Funding; Regeneron: Research Funding; Seattle Genetics: Research Funding; ADC Therapeutics: Research Funding. Ding:Astra Zeneca: Research Funding; Abbvie: Research Funding; Octapharma: Membership on an entity's Board of Directors or advisory committees; MEI Pharma: Membership on an entity's Board of Directors or advisory committees; alexion: Membership on an entity's Board of Directors or advisory committees; Beigene: Membership on an entity's Board of Directors or advisory committees; DTRM: Research Funding; Merck: Membership on an entity's Board of Directors or advisory committees, Research Funding. OffLabel Disclosure: pembrolizumab


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 888-888 ◽  
Author(s):  
Peter Stewart ◽  
Jana Gazdova ◽  
Nikos Darzentas ◽  
Dorte Wren ◽  
Paula Proszek ◽  
...  

Introduction: Current diagnostic standards for lymphoproliferative disorders include detection of clonal immunoglobulin (IG) and/or T cell receptor (TR) rearrangements, translocations, copy number alterations (CNA) and somatic mutations. These analyses frequently require a series of separate tests such as clonality PCR, fluorescence in situ hybridisation and/or immunohistochemistry, MLPA or SNParrays and sequencing. The EuroClonality-NGS DNA capture (EuroClonality-NDC) panel, developed by the EuroClonality-NGS Working Group, was designed to characterise all these alterations by capturing variable, diversity and joining IG and TR genes along with additional clinically relevant genes for CNA and mutation analysis. Methods: Well characterised B and T cell lines (n=14) representing a diverse repertoire of IG/TR rearrangements were used as a proficiency assessment to ensure 7 testing EuroClonality centres achieved optimal sequencing performance using the EuroClonality-NDC optimised and standardised protocol. A set of 56 IG/TR rearrangements across the 14 cell lines were compiled based on detection by Sanger, amplicon-NGS and capture-NGS sequencing technologies. For clinical validation of the NGS panel, clinical samples representing both B and T cell malignancies (n=280), with ≥ 5% tumour infiltration were collected from 10 European laboratories, with 88 (31%) being formalin fixed paraffin-embedded samples. Samples were distributed to the 7 centres for library preparation, hybridisation with the EuroClonality-NDC panel and sequencing on a NextSeq 500, using the EuroClonality-NDC standard protocol. Sequencing data were analysed using a customised version of ARResT/Interrogate, with independent review of the results by 2 centres. All cases exhibiting discordance between the benchmark and capture NGS results were submitted to an internal review committee comprising members of all participating centres. Results: All 7 testing centres detected all 56 rearrangements of the proficiency assessment and continued through to the validation phase. A total of 10/280 (3.5%) samples were removed from the validation analysis due to NGS failures (n=1), tumour infiltration &lt; 5% (n=7), and sample misidentification (n=2). The EuroClonality-NDC panel detected B cell clonality (i.e. detection of at least one clonal rearrangement at IGH, IGK or IGL loci) in 189/197 (96%) B cell malignancies. Seven of the 8 discordant cases were post-germinal centre malignancies exhibiting Ig somatic hypermutation. The EuroClonality-NDC panel detected T cell clonality (i.e. detection of at least one clonal rearrangement at TRA, TRB, TRD or TRG loci) in 70/73 (96%) T cell malignancies. In all 3 discordant cases analysis of benchmark PCR data was not able to detect clonality at any TR loci. Next, we examined whether the EuroClonality-NDC panel could detect clonality at each of the individual loci, resulting in sensitivity values of 95% or higher for all IG/TR loci, with the exception of those where limited benchmark data were available, i.e. IGL (n=3) and TRA (n=7). The specificity of the panel was assessed on benign reactive lesions (n=21) that did not contain clonal IG/TR rearrangements based on BIOMED-2/EuroClonality PCR results; no clonality was observed by EuroClonality-NDC in any of the 21 cases. Limit of detection (LOD) assessment to detect IG/TR rearrangements was performed using cell line blends with each of the 7 centres receiving blended cell lines diluted to 10%, 5.0%, 2.5% and 1.25%. Across all 7 centres the overall detection rate was 100%, 94.1%, 76.5% and 32.4% respectively, giving an overall LOD of 5%. Sufficient data were available in 239 samples for the analysis of translocations. The correct translocation was detected in 137 out of 145 cases, resulting in a sensitivity of 95%. Table 1 shows how translocations identified by the EuroClonality-NDC protocol were restricted to disease subtypes known to harbour those types of translocations. Analysis of CNA and somatic mutations in all samples is underway and will be presented at the meeting. Conclusions: The EuroClonality-NDC panel, with an optimised laboratory protocol and bioinformatics pipeline, detects IG and TR rearrangements and translocations with high sensitivity and specificity with a LOD ≤ 5% and provides a single end-to-end workflow for the simultaneous detection of IG/TR rearrangements, translocations, CNA and sequence variants. Table. Disclosures Stamatopoulos: Janssen: Honoraria, Research Funding; Abbvie: Honoraria, Research Funding. Klapper:Roche, Takeda, Amgen, Regeneron: Honoraria, Research Funding. Ferrero:Gilead: Speakers Bureau; Janssen: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; EUSA Pharma: Membership on an entity's Board of Directors or advisory committees; Servier: Speakers Bureau. van den Brand:Gilead: Speakers Bureau. Groenen:Gilead: Speakers Bureau. Brüggemann:Incyte: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees; Roche: Consultancy. Langerak:Gilead: Research Funding, Speakers Bureau; F. Hoffmann-La Roche Ltd: Research Funding; Genentech, Inc.: Research Funding; Janssen: Speakers Bureau. Gonzalez:Roche: Honoraria, Research Funding; AstraZeneca: Consultancy, Honoraria, Research Funding, Speakers Bureau.


Sign in / Sign up

Export Citation Format

Share Document