scholarly journals Evidence of Classical Complement Pathway Involvement in a Subset of Patients with Warm Autoimmune Hemolytic Anemia

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2001-2001
Author(s):  
Jeffrey Teigler ◽  
Julian Low ◽  
Shawn Rose ◽  
Ellen Cahir-Mcfarland ◽  
Ted Yednock ◽  
...  

Abstract Introduction: Autoimmune Hemolytic Anemia (AIHA) is caused by autoantibodies that react with red blood cells (RBCs) resulting in predominantly extravascular hemolysis in an FcR and/or complement-dependent manner. In warm AIHA (wAIHA), autoantibodies are generally of the IgG isotype, while in cold agglutinin disease (CAD) they are predominantly of the IgM isotype. It is well established that the classical complement cascade is critical for the pathogenesis of CAD based on therapeutic clinical studies. Published data also suggest that complement activation plays a role in wAIHA, although it is not clear which patients would most benefit from complement-based therapy. To help address this question, we utilized an assay that measures the ability of autoantibodies in patient sera to induce complement deposition on the surface of donor RBCs (based on Meulenbroek, et al., 2015). Methods: Sera were collected retrospectively from 12 wAIHA patients whose direct antiglobulin tests (DAT) were either IgG+/C3+ or IgG+/C3-. Sera retrospectively collected from two CAD patients were used as positive controls. Individual patient sera were examined in the in vitro complement deposition assay using RBCs from type O+ healthy donors. RBCs and sera were incubated at 37 oC in the presence of either EDTA or an inhibitory antibody against C1q as inhibitors of the classical pathway. RBCs were then stained and processed by flow cytometry to determine the level of C4 deposition. Results: Sera from both CAD patients deposited C4 on the surface of ~70% of healthy human RBCs in vitro. Four out of twelve (33%) sera from wAIHA patients displayed this activity, and all four of these patients were identified as IgG+/C3+ on DAT. Complement deposition ranged from ~10-60% of the RBCs in wAIHA, suggesting heterogeneity in antibody activity for complement deposition in sera from wAIHA patients. Addition of EDTA or an inhibitory antibody against C1q fully blocked deposition of C4 on RBCs by wAIHA sera, indicating dependence of the classical complement pathway. These results indicate differences in the frequency of classical pathway involvement in CAD versus wAIHA and may help identify a subset of wAIHA patients most likely to respond to anti-C1q therapy. Conclusions: The hypothesis of classical complement cascade involvement in wAIHA disease in a subset of patients is supported by our results. Critically, complement deposition on the surface of cells by anti-C1q prevented the deposition of a downstream complement marker, C4. Inhibition of C1q has been shown to block activation of all downstream classical complement components, including C3b and C4b involved in extravascular hemolysis and C5b involved in direct cell lysis. The therapeutic potential of blocking classical complement pathway activity in wAIHA is currently being evaluated in an ongoing Phase 2 interventional trial (NCT04691570) assessing efficacy of an anti-C1q drug candidate in wAIHA patients, focusing on those with evidence of classical complement pathway activity. Disclosures Teigler: Annexon Inc: Current Employment, Current equity holder in publicly-traded company. Low: Annexon Inc: Current Employment, Current equity holder in publicly-traded company. Rose: Annexon Inc: Current Employment, Current equity holder in publicly-traded company. Cahir-Mcfarland: Annexon Inc: Current Employment, Current equity holder in publicly-traded company. Yednock: Annexon Inc: Current Employment, Current equity holder in publicly-traded company. Kroon: Annexon Inc: Current Employment, Current equity holder in publicly-traded company. Keswani: Annexon Inc: Current Employment, Current equity holder in publicly-traded company. Barcellini: Novartis: Honoraria; Bioverativ: Membership on an entity's Board of Directors or advisory committees; Agios: Honoraria, Research Funding; Alexion Pharmaceuticals: Honoraria; Incyte: Membership on an entity's Board of Directors or advisory committees.

Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 703-703
Author(s):  
Ulrich Jaeger ◽  
Shirley D'Sa ◽  
Christian Schoergenhofer ◽  
Johann Bartko ◽  
Christian Sillaber ◽  
...  

Abstract Background: Cold agglutinin disease is an autoimmune hemolytic anemia with limited treatment options and no established standard of care. The pathophysiology is driven by the classical complement pathway in which IgM auto-antibodies bind erythrocytes and fix complement via initial binding and activation of the C1 complex generating active C1s protease. Anemia results from extravascular hemolysis of complement opsonized erythrocytes, primarily in the liver. The anti-C1s antibody BIVV009 inhibits C1s activity, and specifically blocks the classical complement pathway, leaving the alternate and lectin complement pathways intact. We hypothesized that classical complement pathway blockade using BIVV009 would prevent hemolysis, correct anemia, and obviate the need for transfusions in patients with primary cold agglutinin disease. Methods: Six patients primary cold agglutinin disease patients were enrolled in an open label Ph1/1b trial. The study was conducted in three parts: Part A, single ascending doses in healthy volunteers (HV); Part B, multiple ascending doses in HV; and Part C, multiple doses in patients with four classical complement mediated diseases including cold agglutinin disease. Patients in Part C received a test dose of 10 mg/kg BIVV009, followed by a full dose of 60 mg/kg 1-4 days later, and three additional weekly doses of 60 mg/kg. Biweekly fixed doses of 5.5g were used for maintenance therapy in a subsequent Named Patient Program. Results: All infusions were well tolerated without need for pre-medication, and pharmacokinetic data demonstrated that BIVV009 infusions supported biweekly treatment. BIVV009 concentrations >18µg/mL inhibited the classical pathway of complement activation (as assessed by the Wieslab-CP assay). BIVV009 infusion subsequently raised endogenous C4 levels 3.2-fold (95%CI: 2.4-4.0 fold; p<0.05) demonstrating classical complement inhibition and reduced complement factor consumption. In addition, deposition of C3d on erythrocytes decreased as measured by flow cytometric analysis, consistent with evidence of classical complement pathway inhibition and reduced erythrocyte opsonization. BIVV009 rapidly abrogated extravascular hemolysis, as measured by normalizing bilirubin levels within 24 hours, normalized haptoglobin levels in 4 of 6 patients within one week, and restoring absolute reticulocyte counts to levels appropriate for the degree of anemia. All 6 of 6 primary cold agglutinin disease patients responded with a hemoglobin increase >3.5 g/dL (mean 4.3g/dl; 95%CI: 3.8-4.9 g/dL; individual best response; p<0.05) within 6 weeks; the lower 95% confidence interval for the responder rate was 54%. Hemolysis and anemia recurred when effective drug levels were cleared from the circulation approximately 3-4 weeks after the last dose of BIVV009 for all patients. Re-exposure to BIVV009 in the named patient program recapitulated the efficacy, again in all patients. Maintenance therapy demonstrated persistent responses without related adverse effects or development of clinically relevant neutralizing antibodies, now with up to 18 months of observation. All five transfusion-dependent patients became and remained transfusion-free during treatment. Conclusion: BIVV009 was well tolerated and immediately stopped hemolysis in 6 of 6 severely anemic patients suffering from primary cold agglutinin disease, increasing hemoglobin by a mean of 4.3g/dl and precluding the need for transfusions while on BIVV009. Based on these encouraging results, BIVV009 received FDA Breakthrough Therapy designation and pivotal trials will be initiated to further define BIVV009 safety and efficacy profiles. Figure 1: individual hemoglobin response patterns in primary cold agglutinin disease patients during the initial exposure of 6 weeks Figure 1 Figure 1. Disclosures Jaeger: Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees; Novartis Pharmaceuticals Corporation: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel, Accommodations, Expenses; Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel, Accommodations, Expenses. D'Sa: Janssen Cilag: Consultancy, Honoraria, Other: Education grant, Research Funding; Amgen: Consultancy, Honoraria, Research Funding. Patou: Inc., a Bioverativ Inc. Company: Employment. Panicker: Bioverativ, Inc.: Employment, Equity Ownership. Parry: Bioverativ Therapeutics Inc.: Employment. Gilbert: TrueNorth Therapeutics Inc., a Bioverativ Inc. Company: Other: formerly Employment. Jilma: Biomed: Research Funding; Recardio: Research Funding; Emcools: Research Funding; Bayer: Research Funding; Themis: Research Funding; Syntheract: Research Funding; Bioverativ: Research Funding; TrueNorth Therapeutics: Research Funding; JHL: Research Funding; Baxalta: Research Funding; Arsanis: Research Funding; VitaerisBios: Research Funding; TrueNorth Therapeutics Inc.: Consultancy; Valneva: Research Funding; Prediction Biosciences: Research Funding; Boehringer Ingelheim: Research Funding; Octapharma: Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1453-1453
Author(s):  
Ellinor I.B. Peerschke ◽  
Sandip Panicker ◽  
Alexa M. Sughroue ◽  
James B. Bussel

Abstract Background: Immune thrombocytopenic purpura (ITP) is an autoimmune disorder in which antiplatelet antibodies mediate accelerated platelet clearance from circulation and also inhibit platelet production, resulting in thrombocytopenia. Activation of the classical pathway (CP) of complement is associated with a variety of immune disorders involving the presence of autoantibodies. The role of the complement system in ITP is poorly understood. Methods: Plasma samples (0.32% sodium citrate) from patients with chronic ITP (n=55) were evaluated for their ability to activate the CP of complement. The 55 patients consisted primarily of adult but also of pediatric patients with ITP, undergoing various treatment regimens. The most common included IVIG, rituximab, and especially thrombopoietic agents (eltrombopag, romiplostim). Almost all patients included in the analysis had chronic ITP, defined as ITP lasting > 12 months. The complement activating capacity (CAC) of patient plasma was evaluated with a previously described in vitro assay ( Peerschke et al., Brit J Haematol, 2009) that measures complement activation on immobilized, fixed heterologous platelets using an ELISA approach with monoclonal antibodies to C1q, C4d, iC3b, and C5b-9. CAC represents assay optical density readings normalized to reference normal plasma pool. A CAC of >1.5 was considered indicative of enhanced complement activation, based on reference ranges established for plasma from healthy volunteers. Patient CAC values were correlated with platelet count. The ability of TNT003 to block in vitro complement activation was assessed relative to an isotype matched control. TNT003 is a mouse monoclonal antibody (IgG2a) that targets the CP-serine protease C1s. Results: A statistically significant (p=0.042) inverse correlation was noted between C4d deposition and platelet count in the 55 ITP patient samples tested. Heightened classical complement pathway activation was demonstrated in 7 of 55 patients (~13%) with ITP as evidenced by increased C4d deposition. 6 of the 7 patients with increased C4d deposition had platelet counts <100k/mcL, and 5 patients had platelet counts <50K/mcL. There was a non-significant trend for higher C4d levels on platelets and lower AIPF (absolute immature platelet fraction, equivalent to platelet reticulocytes). TNT003 (100 mcg/ml) inhibited C4 activation by 44 + 43% in ITP plasma in vitro. Inhibition of downstream complement activation, iC3b and C5b-9 deposition, was 72% + 17 % and 82% + 14% (mean + S.D.), respectively. Similar results were obtained using 10 mM EDTA, a known inhibitor of complement activation. Conclusions: The heterogeneity of patient responses to different treatment modalities in ITP support the concept of different immune mechanisms contributing to thrombocytopenia. Our data demonstrate classical complement pathway activation in a subgroup of patients with ITP, and further present the first evidence of CP complement inhibition by a novel C1s inhibitor in this setting. Failure to completely block C4 activation in ITP plasma in vitro by either of TNT003 or EDTA, suggests the presence of preformed, circulating C4d containing complement complexes in patient plasma. The ability of TNT003 to more completely inhibit C3 activation and C5b-9 assembly downstream of C4 in the in vitro assay system is consistent with direct activation and inhibition of complement at the platelet surface. Thus, TNT003 may mitigate enhanced platelet clearance by RES via inhibition of complement mediated platelet opsonization by C3b and platelet lysis by C5b-9. Further studies are required to evaluate the impact of TNT003 on thrombocytopenia in ITP. Disclosures Peerschke: True North Therapeutics: Research Support Other. Panicker:True North Therapeutics: Employment. Bussel:True North Therapeutics: Research Support Other.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 891-891
Author(s):  
Annamaria Gulla ◽  
Eugenio Morelli ◽  
Mehmet K. Samur ◽  
Cirino Botta ◽  
Megan Johnstone ◽  
...  

Abstract Immune therapies including CAR T cells and bispecific T cell engagers are demonstrating remarkable efficacy in relapsed refractory myeloma (MM). In this context, we have recently shown that proteasome inhibitor bortezomib (BTZ) results in immunogenic cell death (ICD) and in a viral mimicry state in MM cells, allowing for immune recognition of tumor cells. Induction of a robust anti-MM immune response after BTZ was confirmed both in vitro and in vivo: treatment of 5TGM1 MM cells with BTZ induced tumor regression associated with memory immune response, confirmed by ELISPOT of mouse splenocytes. We have confirmed the obligate role of calreticulin (CALR) exposure in phagocytosis and the ICD process, since BTZ-induced ICD is impaired in CALR KO MM cells both in vitro and in vivo. We further showed that the therapeutic efficacy of BTZ in patients was correlated with ICD induction: BTZ-induced ICD signature was positively correlated with OS (p=0.01) in patients enrolled in the IFM/DFCI 2009 study. Together, these studies indicate that ICD is associated with long-term response after BTZ treatment. In this work, we reasoned that genomic or transcriptomic alterations associated with shorter survival of MM patients after BTZ treatment may impair activation of the ICD pathway. To this aim, we performed a transcriptomic analysis of purified CD138+ cells from 360 newly diagnosed, clinically-annotated MM patients enrolled in the IFM/DFCI 2009 study. By focusing on genes involved in the ICD process, we found that low levels of GABA Type A Receptor-Associated Protein (GABARAP) were associated with inferior clinical outcome (EFS, p=0.0055). GABARAP gene locus is located on chr17p13.1, a region deleted in high risk (HR) MM with unfavorable prognosis. Remarkably, we found that correlation of low GABARAP levels with shorter EFS was significant (p=0.018) even after excluding MM patients with del17p; and GABARAP is therefore an independent predictor of clinical outcome. GABARAP is a regulator of autophagy and vesicular trafficking, and a putative CALR binding partner. Interestingly, among a panel of MM cell lines (n=6), BTZ treatment failed to induce exposure of CALR and MM cell phagocytosis by DCs in KMS11 cells, which carry a monoallelic deletion of GABARAP. This effect was rescued by stable overexpression of GABARAP. Moreover, CRISPR/Cas9-mediated KO of GABARAP in 3 ICD-sensitive cell lines (AMO1, H929, 5TGM1) abrogated CALR exposure and ICD induction by BTZ. GABARAP add-back by stable overexpression in KO clones restored both CALR exposure and induction of ICD, confirming GABARAP on-target activity. Similarly, pre-treatment of GABARAP KO cells with recombinant CALR restored MM phagocytosis, further confirming that GABARAP impairs ICD via inhibition of CALR exposure. Based on these findings, we hypothesized that GABARAP loss may alter the ICD pathway via CALR trapping, resulting in the ICD resistant phenotype observed in GABARAP null and del17p cells. To this end, we explored the impact of GABARAP KO on the CALR protein interactome, in the presence or absence of BTZ. Importantly, GABARAP KO produced a significant increase of CALR binding to stanniocalcin 1 (STC1), a phagocytosis checkpoint that mediates the mitochondrial trapping of CALR, thereby minimizing its exposure upon ICD. Consistently, GABARAP KO also affected CALR interactome in BTZ-treated cells, which was significantly enriched in mitochondrial proteins. Importantly, co-IP experiments confirmed GABARAP interaction with STC1. These data indicate a molecular scenario whereby GABARAP interacts with STC1 to avoid STC1-mediated trapping of CALR, allowing for the induction of ICD after treatment with ICD inducers; on the other hand, this mechanism is compromised in GABARAP null or del17p cells, and the STC1-CALR complex remains trapped in the mitochondria, resulting in ICD resistance. To functionally validate our findings in the context of the immune microenvironment, we performed mass Cytometry after T cell co-culture with DCs primed by both WT and GABARAP KO AMO1 clones. And we confirmed that treatment of GABARAP KO clones with BTZ failed to activate an efficient T cell response. In conclusion, our work identifies a unique mechanism of immune escape which may contribute to the poor clinical outcome observed in del17p HR MM patients. It further suggests that novel therapies to restore GABARAP may allow for the induction of ICD and improved patient outcome in MM. Disclosures Bianchi: Jacob D. Fuchsberg Law Firm: Consultancy; MJH: Honoraria; Karyopharm: Consultancy, Honoraria; Pfizer: Consultancy, Honoraria. Richardson: AstraZeneca: Consultancy; Regeneron: Consultancy; Protocol Intelligence: Consultancy; Secura Bio: Consultancy; GlaxoSmithKline: Consultancy; Sanofi: Consultancy; Janssen: Consultancy; Takeda: Consultancy, Research Funding; AbbVie: Consultancy; Karyopharm: Consultancy, Research Funding; Celgene/BMS: Consultancy, Research Funding; Oncopeptides: Consultancy, Research Funding; Jazz Pharmaceuticals: Consultancy, Research Funding. Chauhan: C4 Therapeutics: Current equity holder in publicly-traded company; Stemline Therapeutics, Inc: Consultancy. Munshi: Legend: Consultancy; Karyopharm: Consultancy; Amgen: Consultancy; Janssen: Consultancy; Celgene: Consultancy; Oncopep: Consultancy, Current equity holder in publicly-traded company, Other: scientific founder, Patents & Royalties; Abbvie: Consultancy; Takeda: Consultancy; Adaptive Biotechnology: Consultancy; Novartis: Consultancy; Pfizer: Consultancy; Bristol-Myers Squibb: Consultancy. Anderson: Sanofi-Aventis: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Gilead: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Millenium-Takeda: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Pfizer: Membership on an entity's Board of Directors or advisory committees; Scientific Founder of Oncopep and C4 Therapeutics: Current equity holder in publicly-traded company, Current holder of individual stocks in a privately-held company; AstraZeneca: Membership on an entity's Board of Directors or advisory committees; Mana Therapeutics: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3411-3411
Author(s):  
Maro Ohanian ◽  
Martha L. Arellano ◽  
Moshe Y. Levy ◽  
Kristen O'Dwyer ◽  
Hani Babiker ◽  
...  

Abstract INTRODUCTION: APTO-253 represses expression of the MYC oncogene by targeting a conserved G-quadruplex structure in its promoter, down-regulates MYC mRNA and protein levels and induces apoptosis in AML cell lines and marrow samples from patients with AML, MDS, and MPN in vitro. After injection, a large fraction of APTO-253 binds iron and transforms to the Fe(253) 3 complex which retains full activity. APTO-253 has been granted orphan drug designation for AML by the US FDA and is being studied in a Phase 1a/b clinical trial in patients with relapsed or refractory AML (R/R AML) or high-risk myelodysplasias (high-risk MDS) (NCT02267863). AIMS: Primary objectives are to determine the safety and tolerability of APTO-253, MTD, dose limiting toxicities (DLT), and the RP2D. Key secondary objectives are to assess the pharmacokinetic (PK) profile, pharmacodynamic (PD) activity, and preliminary evidence of antitumor activity. METHODS: Eligible patients have R/R AML or high-risk MDS for which either standard treatment has failed, is no longer effective, or can no longer be administered safely. Treatment- emergent adverse events (TEAEs) and tumor responses are evaluated using International Working Group criteria. APTO-253 is administered by IV infusion once weekly on days 1, 8, 15, and 22 of each 28-day cycle; ascending dose cohorts were enrolled at a starting dose of 20 mg/m 2 with planned escalation to 403 mg/m 2. RESULTS: As of June 7, 2021, a total of 18 patients (median age 64.0 years, 16 AML and 2 high-risk MDS) with a median of 2.5 prior treatments (range of 1 - 9) have been treated with APTO-253 at doses of 20 (n=1), 40 (n=1), 66 (n=4), 100 (n=4) and 150 mg/m 2 (n=8). Most patients were RBC (87.5% of AML and 100% of MDS) and/or platelet (75% of AML and 50% MDS) transfusion-dependent. No DLTs or drug-related serious adverse events have been reported. Only 1 patient had a drug-related TEAE of grade 3 or greater (fatigue, Grade 3, probably related). Preliminary PK analysis (Figure 1) showed that serum levels of APTO-253 were dose proportional. C max and AUC 0-72h for C1D1 dosing were 0.06, 0.02, 0.36 ± 0.37, 0.44 ± 0.41 and 0.72 ± 0.70 µM and 0.11, 0.15, 3.98 ± 1.77, 4.79 ± 0.87 and 2.51 ± 1.73 µM*h for dose levels of 20, 40, 66, 100 and 150 mg/m 2, respectively. Plasma levels for Fe(253) 3 were significantly higher than those for the APTO-253 monomer. For example, C max and AUC 0-72h of Fe(253) 3 for C1D1 dosing of patients in Cohort 150 mg/m 2 were 2- and 20- fold higher than the ATPO-253 monomer at 15.09 ± 0.42 µM and 51.52 ± 28.26 µM*h, respectively. Following dosing at 150 mg/m 2, serum concentrations of Fe(253) 3 were above 0.5 µM for &gt; 48 h, which approaches the therapeutic range based on in vitro studies. CONCLUSIONS: APTO-253 has been well-tolerated at doses of 20, 40, 66, 100 and 150 mg/m 2 over multiple cycles and escalated to 210 mg/m 2 (Cohort 6). PK analysis revealed that APTO-253 is rapidly transformed to and co-exists with the Fe(253) 3 in serum from R/R AML and high-risk MDS patients. Enrollment of patients at the 210 mg/m 2 dose level is ongoing and updated clinical data will be presented at the meeting. Figure 1 Figure 1. Disclosures Arellano: KITE Pharma, Inc: Consultancy; Syndax Pharmaceuticals, Inc: Consultancy. Levy: AstraZeneca: Consultancy, Honoraria, Speakers Bureau; Jazz Pharmaceuticals: Consultancy, Honoraria, Speakers Bureau; GSK: Consultancy, Other: Promotional speaker; Janssen Pharmaceuticals: Consultancy, Honoraria, Other: Promotional speaker, Speakers Bureau; AbbVie: Consultancy, Honoraria, Other: Promotional speaker, Speakers Bureau; Morphosys: Consultancy, Honoraria, Other: Promotional speaker, Speakers Bureau; Bristol Myers Squibb: Consultancy, Honoraria, Other: Promotional speaker, Speakers Bureau; Seattle Genetics: Consultancy, Honoraria, Other: Promotional speaker, Speakers Bureau; Epizyme: Consultancy, Other: Promotional speaker; Takeda: Consultancy, Honoraria, Other: Promotional speaker, Speakers Bureau; Dova: Consultancy, Other: Promotional speaker; Novartis: Consultancy, Other: Promotional speaker; TG Therapeutics: Consultancy, Honoraria, Speakers Bureau; Karyopharm: Consultancy, Honoraria, Other: Promotional speaker, Speakers Bureau; Gilead Sciences, Inc.: Consultancy, Honoraria, Speakers Bureau; Beigene: Consultancy, Honoraria, Speakers Bureau; Amgen Inc.: Consultancy, Honoraria, Other: Promotional speaker, Speakers Bureau. Mahadevan: caris: Speakers Bureau; Guardanthealt: Speakers Bureau; PFIZER: Other: Clinical trial Adverse events committee; TG Therapeuticals: Other: Clinical trial Adverse events committee. Zhang: Aptose Biosciences, Inc.: Current Employment. Rastgoo: Aptose Biosciences, Inc.: Current Employment. Jin: Aptose Biosciences, Inc.: Current Employment. Marango: Aptose Biosciences, Inc.: Current Employment, Current equity holder in publicly-traded company. Howell: Aptose Biosciences, Inc.: Consultancy, Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees, Research Funding. Rice: Aptose Biosciences, Inc.: Current Employment, Current equity holder in publicly-traded company, Patents & Royalties; Oncolytics Biotech Inc.: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees. Bejar: Aptose Biosciences, Inc.: Current Employment, Current equity holder in publicly-traded company; Takeda: Research Funding; BMS: Consultancy, Research Funding; Gilead: Consultancy, Honoraria; Epizyme: Consultancy, Honoraria; Astex: Consultancy; Silence Therapeutics: Consultancy.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1204-1204
Author(s):  
Bin Cai ◽  
Aaron N Nguyen ◽  
Songmao Zheng ◽  
Jianfeng Shi ◽  
Guizhong Liu ◽  
...  

Abstract Recent clinical data illustrate the effectiveness of CD20xCD3 T cell engagers (TCEs) that redirect the patient's endogenous T cells to eliminate CD20-positive tumor cells. While several of these products have demonstrated promising clinical activities in B-cell malignancies, their potential therapeutic utility is limited by cytokine release syndrome (CRS), even after strategies such as step-up dosing are implemented. ADG152 is a novel CD20xCD3 TCE prodrug engineered using Adagene's SAFEbody technology to minimize or eliminate CRS and on-target/off-tumor toxicities. The anti-CD20 arm of ADG152 has been engineered for enhanced binding to CD20 compared to other clinical stage or approved antibodies, while its anti-CD3 arm has modulated affinity for CD3 and is also masked by a conditionally activable peptide. In normal tissues and in circulation, the masking moiety on the anti-CD3 arm can function to block the binding of ADG152 to T cells; however, in an activable condition such as the tumor microenvironment where protease activity has been reported to be elevated, the masked antibody can be activated, enabling the activated ADG152 to simultaneously engage T cells and neighboring CD20-expressing tumor cells. In vitro studies showed that ADG152 has enhanced binding to human B cells and CD20-positive Raji tumor cells compared with the benchmark CD20xCD3 TCE plamotamab. On the other hand, ADG152 has significantly reduced binding to the human CD3 δ/ε protein dimer and no binding to human CD3+, CD4+, and CD8+ T cells isolated from PBMCs of normal human donors. Consistent with these results, ADG152 shows significantly decreased ability (more than 100-fold) compared with the benchmark and the unmasked parental molecule to activate CD8+ T cells and to induce T cell-mediated killing in the presence of tumor cells in vitro. ADG152 demonstrated strong anti-tumor effects in vivo. In a human PBMC-engrafted Raji xenograft mouse tumor model, dosing with ADG152 resulted in almost complete tumor growth inhibition at 1.5 mg/kg. In exploratory toxicology studies in cynomolgus monkeys, ADG152 resulted in significantly less cytokine release in monkey blood compared with benchmark, giving ~100-fold safety margin for ADG152 for cytokine induction (Figure). In addition, ADG152 was as effective as the benchmark at inducing B cell depletion from peripheral blood of cynomolgus monkeys. In summary, the preclinical characterization of ADG152 demonstrates that our SAFEbody platform can be used to engineer safe and potent bispecific T cell engagers with increased therapeutic index by allowing for strong anti-tumor activities in mice at doses with minimal cytokine release in monkeys, thereby supporting its advancement to clinical development either as a single agent or in combination with other therapies for the treatment of CD20-expressing B cell malignancies. Figure 1 Figure 1. Disclosures Cai: Adagene Inc.: Current Employment, Current equity holder in publicly-traded company. Nguyen: Sparcbio, LLC: Ended employment in the past 24 months; Adagene Inc.: Current Employment, Current equity holder in publicly-traded company. Zheng: Janssen Pharmaceuticals: Ended employment in the past 24 months; Adagene Inc.: Current Employment, Current equity holder in publicly-traded company. Shi: Adagene Inc.: Current Employment, Current equity holder in publicly-traded company. Liu: Adagene Inc.: Current Employment, Current equity holder in publicly-traded company. Li: Adagene Inc.: Current Employment, Current equity holder in publicly-traded company. Du: Adagene Inc.: Current Employment, Current equity holder in publicly-traded company. Frankel: Cytovia Therapeutics: Current Employment, Current holder of individual stocks in a privately-held company; Adagene Inc.: Consultancy, Current equity holder in publicly-traded company; Bristol Myers Squibb: Current equity holder in publicly-traded company, Ended employment in the past 24 months; IMV: Consultancy; Precision Biosciences: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees; Sutro: Membership on an entity's Board of Directors or advisory committees; Immunai: Consultancy, Membership on an entity's Board of Directors or advisory committees; Minerva Therapeutics: Consultancy, Current holder of stock options in a privately-held company, Membership on an entity's Board of Directors or advisory committees; Myeloid Therapeutics: Consultancy; RAPT Therapeutics: Consultancy; Syros: Consultancy. Luo: Adagene Inc.: Current Employment, Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees. Xu: Bristol Myers Squibb: Current equity holder in publicly-traded company, Ended employment in the past 24 months; Adagene Inc.: Current Employment, Current equity holder in publicly-traded company.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1864-1864
Author(s):  
Julie Kanter ◽  
John F. DiPersio ◽  
Patrick Leavey ◽  
David C. Shyr ◽  
Alexis A Thompson ◽  
...  

Abstract Background Sickle cell disease (SCD) is a recessive monogenic disease caused by a single point mutation in which glutamic acid replaces valine in Codon 6 of the human beta-globin gene (HBB) leading to the production of abnormal globin chains (HbS) that polymerize and cause erythrocytes to sickle. This results in hemolytic anemia, vaso-occlusion and organ damage, which leads to lifelong complications and early mortality. Allogeneic hematopoietic stem cell transplant (allo-HSCT) is the only known cure for SCD, however, its use is limited by the lack of well-matched donors, need for immunosuppression, risk of graft versus host disease and graft rejection. GPH101 is an investigational, autologous, hematopoietic stem cell (HSC) drug product (DP) designed to correct the SCD mutation in the HBB gene ex vivo using a high fidelity Cas9 (CRISPR associated protein 9) paired with an AAV6 (adeno-associated virus type 6) delivery template, efficiently harnessing the natural homology directed repair (HDR) cellular pathway. This approach has the potential to restore normal adult hemoglobin (HbA) production while simultaneously reducing HbS levels. In preclinical studies, HBB gene correction in SCD donor HSCs resulted in ≥60% of gene-corrected alleles in vitro with minimal off-target effects. Gene corrected cells were successfully differentiated toward the erythroid lineage and produced ≥70% HbA in vitro. Long-term engraftment of gene-corrected HSCs was demonstrated in vivo, following transplant into immunodeficient mice, with multi-lineage allelic gene correction frequencies well above the predicted curative threshold of 20%, with potential of this approach to be equivalent or superior to allo-HSCT. In addition, HSC-based correction in an SCD mouse model led to stable adult hemoglobin production, increased erythrocyte lifespan and reduction in sickling morphology, demonstrating the therapeutic potential of this gene correction platform as a curative approach in SCD. Study Design and Methods CEDAR (NCT04819841) is a first-in-human, open-label, single-dose, multi-site Phase 1/2 clinical trial in participants with severe SCD designed to evaluate safety, efficacy and pharmacodynamics (PD) of GPH101. Approximately 15 adult (18-40 years) and adolescent (12-17 years) participants will be enrolled across 5 sites, with adolescent enrollment proceeding after a favorable assessment of adult safety data by a Safety Monitoring Committee. Participants must have a diagnosis of severe SCD (βS/βS), defined as ≥ 4 severe vaso-occlusive crises (VOCs) in the 2 years prior and/or ≥ 2 episodes of acute chest syndrome (ACS), in 2 years prior with at least 1 episode in the past year. Participants on chronic transfusion therapy may be eligible if required VOC and ACS criteria are met in the 2 years prior to the initiation of transfusions. Key exclusion criteria include availability of a 10/10 human leukocyte antigen-matched sibling donor, or prior receipt of HSCT or gene therapy. After eligibility confirmation including screening for pre-treatment cytogenetic abnormalities, participants will undergo plerixafor mobilization and apheresis, followed by CD34+ cell enrichment and cryopreservation, undertaken locally at each trial site before shipment to a centralized manufacturer for GPH101 production. After GPH101 release, participants will undergo eligibility reconfirmation prior to busulfan conditioning and DP infusion. Safety, efficacy and PD measurements will occur for 2 years post-infusion; a long-term follow up study will be offered to participants for an additional 13 years of monitoring. The primary endpoint for this study is safety, measured by the kinetics of HSC engraftment, transplant related mortality, overall survival and frequency and severity of adverse events. Secondary endpoints will explore efficacy and PD, including levels of globin expression as compared to baseline, gene correction rates, clinical manifestations of SCD (including VOC and ACS), laboratory parameters, complications and organ function. In addition, cerebral hemodynamics and oxygen delivery will be assessed by magnetic resonance techniques. Key exploratory endpoints include evaluation of patient-reported outcomes, erythrocyte function, on-target and off-target editing rates, and change from baseline in select SCD characteristics. Disclosures Kanter: Fulcrum Therapeutics, Inc.: Consultancy; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Forma: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Agios: Honoraria, Membership on an entity's Board of Directors or advisory committees; Beam: Honoraria, Membership on an entity's Board of Directors or advisory committees; Sanofi: Honoraria, Membership on an entity's Board of Directors or advisory committees; Graphite Bio: Consultancy; GuidePoint Global: Honoraria; Fulcrum Tx: Consultancy. Thompson: Agios Pharmaceuticals: Consultancy; Graphite Bio: Research Funding; Vertex: Research Funding; Beam Therapeutics: Consultancy; Celgene: Consultancy, Research Funding; Biomarin: Research Funding; Baxalta: Research Funding; CRISPR Therapeutics: Research Funding; Global Blood Therapeutics: Current equity holder in publicly-traded company; bluebird bio: Consultancy, Research Funding; Novartis: Research Funding. Porteus: Versant Ventures: Consultancy; CRISPR Therapeutics: Current equity holder in publicly-traded company; Allogene Therapeutics: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees; Ziopharm: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees; Graphite Bio: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees. Intondi: Graphite Bio: Current Employment, Current equity holder in publicly-traded company; Global Blood Therapeutics: Current equity holder in publicly-traded company, Ended employment in the past 24 months. Lahiri: Graphite Bio: Current Employment, Current equity holder in publicly-traded company. Dever: Graphite Bio: Current Employment, Current equity holder in publicly-traded company. Petrusich: bluebird bio: Current equity holder in publicly-traded company, Ended employment in the past 24 months; Graphite Bio: Current Employment, Current equity holder in publicly-traded company. Lehrer-Graiwer: Global Blood Therapeutics: Current equity holder in publicly-traded company, Ended employment in the past 24 months; Graphite Bio: Current Employment, Current equity holder in publicly-traded company.


2001 ◽  
Vol 194 (6) ◽  
pp. 747-756 ◽  
Author(s):  
Anthony P. Manderson ◽  
Matthew C. Pickering ◽  
Marina Botto ◽  
Mark J. Walport ◽  
Christopher R. Parish

There is evidence that the classical complement pathway may be activated via a “C1-tickover” mechanism, analogous to the C3-tickover of the alternative pathway. We have quantitated and characterized this pathway of complement activation. Analysis of freshly collected mouse and human plasma revealed that spontaneous C3 activation rapidly occurred with the generation of C3 fragments in the plasma. By the use of complement- and Ig-deficient mice it was found that C1q, C4, C2, and plasma Ig were all required for this spontaneous C3 activation, with the alternative complement pathway further amplifying C3 fragment generation. Study of plasma from a human with C1q deficiency before and after therapeutic C1q infusion confirmed the existence of a similar pathway for complement activation in humans. Elevated levels of plasma C3 were detected in mice deficient in complement components required for activation of either the classical or alternative complement pathways, supporting the hypothesis that there is continuous complement activation and C3 consumption through both these pathways in vivo. Blood stasis was found to stimulate C3 activation by classical pathway tick-over. This antigen-independent mechanism for classical pathway activation may augment activation of the complement system at sites of inflammation and infarction.


2021 ◽  
Author(s):  
Rachel E Lamerton ◽  
Edith Marcial Juarez ◽  
Sian E Faustini ◽  
Marisol E Perez-Toledo ◽  
Margaret Goodall ◽  
...  

Antibodies specific for the spike glycoprotein (S) and nucleocapsid (N) SARS-CoV-2 proteins are typically present during severe COVID-19, and induced to S after vaccination. The binding of viral antigens by antibody can initiate the classical complement pathway. Since complement could play pathological or protective roles at distinct times during SARS-CoV-2 infection we determined levels of antibody-dependent complement activation along the complement cascade. Here, we used an ELISA assay to assess complement protein binding (C1q) and the deposition of C4b, C3b, and C5b to S and N antigens in the presence of anti-SARS-CoV-2 antibodies from different test groups: non-infected, single and double vaccinees, non-hospitalised convalescent (NHC) COVID-19 patients and convalescent hospitalised (ITU-CONV) COVID-19 patients. C1q binding correlates strongly with antibody responses, especially IgG1 levels. However, detection of downstream complement components, C4b, C3b and C5b shows some variability associated with the antigen and subjects studied. In the ITU-CONV, detection of C3b-C5b to S was observed consistently, but this was not the case in the NHC group. This is in contrast to responses to N, where median levels of complement deposition did not differ between the NHC and ITU-CONV groups. Moreover, for S but not N, downstream complement components were only detected in sera with higher IgG1 levels. Therefore, the classical pathway is activated by antibodies to multiple SARS-CoV-2 antigens, but the downstream effects of this activation may differ depending on the specific antigen targeted and the disease status of the subject.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3310-3310
Author(s):  
Christa Haase ◽  
Karin Gustafsson ◽  
Shenglin Mei ◽  
Jelena Milosevic ◽  
Shu-Chi Yeh ◽  
...  

Abstract Acute myeloid leukemia (AML) is a hematologic malignancy with poor prognosis for which the standard-of-care chemotherapy treatment regimen has remained virtually unchanged over the past 40 years. We have employed "Image-Seq", a new technology that was developed in our laboratory, to study spatial variations in early leukemia progression in a mouse model of HoxA9-Meis1 AML. We visualized leukemia cells with differing proliferative phenotype using intravital microscopy, captured these cells under image guidance from individual bone marrow microenvironments and studied their differential expression by single-cell RNA sequencing. This analysis identified DPP4 as a key upregulated gene in AML cells from more proliferative bone marrow compartments and associated DPP4 expression with a cell cluster enriched in progenitor cell markers for HoxA9-Meis1 AML, including Flt3, Itgb7 and Ddx4. Strikingly, DPP4 is not expressed in vitro, and its expression in vivo (as quantitated by FACS analysis) correlated with disease progression and marked a more proliferative phenotype both at the 1-week and 2-week time-points during disease progression. Disclosures Sykes: Clear Creek Bio: Current equity holder in publicly-traded company; SAFI Biosolutions: Consultancy, Current equity holder in publicly-traded company; Keros Therapeutics: Consultancy. Scadden: Magenta Therapeutics: Current holder of individual stocks in a privately-held company, Membership on an entity's Board of Directors or advisory committees; VCanBio: Consultancy; LifeVaultBio: Current holder of individual stocks in a privately-held company, Membership on an entity's Board of Directors or advisory committees; Inzen Therapeutics: Membership on an entity's Board of Directors or advisory committees; Garuda Therapeutics: Current holder of individual stocks in a privately-held company, Membership on an entity's Board of Directors or advisory committees; FOG Pharma: Consultancy; Fate Therapeutics: Current holder of individual stocks in a privately-held company; Editas Medicines: Current holder of individual stocks in a privately-held company, Membership on an entity's Board of Directors or advisory committees; Dainippon Sumitomo Pharma: Other: sponsored research; Clear Creek Bio: Current holder of individual stocks in a privately-held company, Membership on an entity's Board of Directors or advisory committees; Agios Pharmaceuticals: Current holder of individual stocks in a privately-held company, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2387-2387
Author(s):  
Glaivy Batsuli ◽  
Seema R Patel ◽  
Courtney Cox ◽  
Wallace H. Baldwin ◽  
John S. Lollar ◽  
...  

Introduction: The immune response to factor VIII (fVIII) is a CD4+ T cell dependent process initiated by fVIII recognition and processing by antigen presenting cells. The C1 and C2 domains have been proposed as the primary domains that mediate fVIII internalization by dendritic cells. Our prior studies demonstrate that fVIII pre-bound to anti-C1 and C2 domain monoclonal antibodies (MAbs) reduces fVIII internalization by murine derived dendritic cells. However, anti-A1 and A3 domain antibodies increase fVIII endocytosis by dendritic cells. In this study, we analyzed the antibody titers of hemophilia A mice immunized with binary fVIII and MAb complexes to determine whether changes in fVIII internalization observed in vitro correspond to changes in the immune response to fVIII in vivo. Methods: Exon16 (E16) knockout mice deficient in fVIII were immunized with B-domain deleted fVIII in the presence of either anti-fVIII MAb 2-116 (anti-A1, IgG2a), 4A4 (anti-A2, IgG2a), 2-113 (anti-A3, IgG1), B136 (anti-C1, IgG2a), or 3D12 (anti-C2, IgG2b) versus fVIII alone. Mice were immunized by weekly retro-orbital injections of 0.1 µg fVIII incubated with 1 µg anti-fVIII MAb for 4 weeks followed by a boost dose of 0.2 µg fVIII and 2 µg anti-fVIII MAb one week later at week 5. Anti-fVIII ELISA titers (in arbitrary units, AU) were analyzed from plasma samples collected at week 7 to account for IgG half-life. A separate cohort of mice immunized with anti-fVIII MAbs alone served as controls to normalize ELISA titers in each fVIII/MAb group to account for residual injected MAbs in the plasma samples. Results: Hemophilia A mice immunized with fVIII/2-116 and fVIII/4A4 complexes significantly increased anti-fVIII ELISA titers compared to mice immunized with fVIII alone (figure 1). Mice immunized with fVIII/2-116 and fVIII/4A4 had median ELISA titers of 7,401 AU (interquartile range, IQR, 2,654 - 11,910 AU) and 3,620 AU (IQR 1,062 - 7,969 AU), respectively, compared to mice immunized with fVIII (median titer 1,063 AU, IQR 402 - 2,476 AU). MAb 2-116 is a non-inhibitory antibody with a titer of <1 Bethesda Unit (BU)/mg IgG, while 4A4 is a highly inhibitory antibody with a titer of 40,000 BU/mg IgG. Neither MAb interferes with fVIII binding to von Willebrand factor (VWF) or phospholipid vesicles. Mice immunized with fVIII/2-113 (median titer 2,210 AU, IQR 402 - 8,318 AU), fVIII/B136 (median titer 123 AU, IQR 0 - 9,709 AU), and fVIII/3D12 (median titer 3,244 AU, IQR 0 - 5,180 AU) did not have significantly different anti-fVIII ELISA titers compared to mice immunized with fVIII. However there was a trend towards reduced anti-fVIII titers with fVIII/B136 and fVIII/3D12 injections. MAbs B136 and 3D12 inhibit fVIII binding to VWF and have been shown to significantly increased fVIII clearance in hemophilia A mice compared to fVIII in a VWF-dependent manner. Median titers for mice immunized with MAbs alone to account for residual injected MAbs were 13 AU (2-116), 12 AU (4A4), 18 AU (2-113), 16 AU (B136), and 4 AU (3D12). Conclusions: Immunization of hemophilia A mice with fVIII/MAb complexes, specifically anti-A1 MAb 2-116 and anti-A2 MAb 4A4, enhance the immune response to fVIII. MAb 2-116 significantly increased anti-fVIII antibody titers in vivo, which correlates with increased fVIII internalization by immature dendritic cells observed in vitro. A better understanding of the effect of anti-fVIII antibodies on fVIII conformational changes could provide insight into whether these changes alter fVIII recognition by immune cells and subsequently propagate the immune response to fVIII at the onset of inhibitor formation or during immune tolerance induction. Disclosures Batsuli: Genentech: Other: Advisory board participant; Bayer: Other: Advisory board participant; Octapharma: Other: Advisory board participant. Meeks:HEMA Biologics: Membership on an entity's Board of Directors or advisory committees; Novo Nordisk: Membership on an entity's Board of Directors or advisory committees; Genentech: Membership on an entity's Board of Directors or advisory committees; Bioverativ: Membership on an entity's Board of Directors or advisory committees; Takeda-Shire: Membership on an entity's Board of Directors or advisory committees; Bayer: Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document