scholarly journals Spatial Transcriptomics Reveals DPP4 As Novel Marker of a More Proliferative Phenotype in Early AML Progression

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3310-3310
Author(s):  
Christa Haase ◽  
Karin Gustafsson ◽  
Shenglin Mei ◽  
Jelena Milosevic ◽  
Shu-Chi Yeh ◽  
...  

Abstract Acute myeloid leukemia (AML) is a hematologic malignancy with poor prognosis for which the standard-of-care chemotherapy treatment regimen has remained virtually unchanged over the past 40 years. We have employed "Image-Seq", a new technology that was developed in our laboratory, to study spatial variations in early leukemia progression in a mouse model of HoxA9-Meis1 AML. We visualized leukemia cells with differing proliferative phenotype using intravital microscopy, captured these cells under image guidance from individual bone marrow microenvironments and studied their differential expression by single-cell RNA sequencing. This analysis identified DPP4 as a key upregulated gene in AML cells from more proliferative bone marrow compartments and associated DPP4 expression with a cell cluster enriched in progenitor cell markers for HoxA9-Meis1 AML, including Flt3, Itgb7 and Ddx4. Strikingly, DPP4 is not expressed in vitro, and its expression in vivo (as quantitated by FACS analysis) correlated with disease progression and marked a more proliferative phenotype both at the 1-week and 2-week time-points during disease progression. Disclosures Sykes: Clear Creek Bio: Current equity holder in publicly-traded company; SAFI Biosolutions: Consultancy, Current equity holder in publicly-traded company; Keros Therapeutics: Consultancy. Scadden: Magenta Therapeutics: Current holder of individual stocks in a privately-held company, Membership on an entity's Board of Directors or advisory committees; VCanBio: Consultancy; LifeVaultBio: Current holder of individual stocks in a privately-held company, Membership on an entity's Board of Directors or advisory committees; Inzen Therapeutics: Membership on an entity's Board of Directors or advisory committees; Garuda Therapeutics: Current holder of individual stocks in a privately-held company, Membership on an entity's Board of Directors or advisory committees; FOG Pharma: Consultancy; Fate Therapeutics: Current holder of individual stocks in a privately-held company; Editas Medicines: Current holder of individual stocks in a privately-held company, Membership on an entity's Board of Directors or advisory committees; Dainippon Sumitomo Pharma: Other: sponsored research; Clear Creek Bio: Current holder of individual stocks in a privately-held company, Membership on an entity's Board of Directors or advisory committees; Agios Pharmaceuticals: Current holder of individual stocks in a privately-held company, Membership on an entity's Board of Directors or advisory committees.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 891-891
Author(s):  
Annamaria Gulla ◽  
Eugenio Morelli ◽  
Mehmet K. Samur ◽  
Cirino Botta ◽  
Megan Johnstone ◽  
...  

Abstract Immune therapies including CAR T cells and bispecific T cell engagers are demonstrating remarkable efficacy in relapsed refractory myeloma (MM). In this context, we have recently shown that proteasome inhibitor bortezomib (BTZ) results in immunogenic cell death (ICD) and in a viral mimicry state in MM cells, allowing for immune recognition of tumor cells. Induction of a robust anti-MM immune response after BTZ was confirmed both in vitro and in vivo: treatment of 5TGM1 MM cells with BTZ induced tumor regression associated with memory immune response, confirmed by ELISPOT of mouse splenocytes. We have confirmed the obligate role of calreticulin (CALR) exposure in phagocytosis and the ICD process, since BTZ-induced ICD is impaired in CALR KO MM cells both in vitro and in vivo. We further showed that the therapeutic efficacy of BTZ in patients was correlated with ICD induction: BTZ-induced ICD signature was positively correlated with OS (p=0.01) in patients enrolled in the IFM/DFCI 2009 study. Together, these studies indicate that ICD is associated with long-term response after BTZ treatment. In this work, we reasoned that genomic or transcriptomic alterations associated with shorter survival of MM patients after BTZ treatment may impair activation of the ICD pathway. To this aim, we performed a transcriptomic analysis of purified CD138+ cells from 360 newly diagnosed, clinically-annotated MM patients enrolled in the IFM/DFCI 2009 study. By focusing on genes involved in the ICD process, we found that low levels of GABA Type A Receptor-Associated Protein (GABARAP) were associated with inferior clinical outcome (EFS, p=0.0055). GABARAP gene locus is located on chr17p13.1, a region deleted in high risk (HR) MM with unfavorable prognosis. Remarkably, we found that correlation of low GABARAP levels with shorter EFS was significant (p=0.018) even after excluding MM patients with del17p; and GABARAP is therefore an independent predictor of clinical outcome. GABARAP is a regulator of autophagy and vesicular trafficking, and a putative CALR binding partner. Interestingly, among a panel of MM cell lines (n=6), BTZ treatment failed to induce exposure of CALR and MM cell phagocytosis by DCs in KMS11 cells, which carry a monoallelic deletion of GABARAP. This effect was rescued by stable overexpression of GABARAP. Moreover, CRISPR/Cas9-mediated KO of GABARAP in 3 ICD-sensitive cell lines (AMO1, H929, 5TGM1) abrogated CALR exposure and ICD induction by BTZ. GABARAP add-back by stable overexpression in KO clones restored both CALR exposure and induction of ICD, confirming GABARAP on-target activity. Similarly, pre-treatment of GABARAP KO cells with recombinant CALR restored MM phagocytosis, further confirming that GABARAP impairs ICD via inhibition of CALR exposure. Based on these findings, we hypothesized that GABARAP loss may alter the ICD pathway via CALR trapping, resulting in the ICD resistant phenotype observed in GABARAP null and del17p cells. To this end, we explored the impact of GABARAP KO on the CALR protein interactome, in the presence or absence of BTZ. Importantly, GABARAP KO produced a significant increase of CALR binding to stanniocalcin 1 (STC1), a phagocytosis checkpoint that mediates the mitochondrial trapping of CALR, thereby minimizing its exposure upon ICD. Consistently, GABARAP KO also affected CALR interactome in BTZ-treated cells, which was significantly enriched in mitochondrial proteins. Importantly, co-IP experiments confirmed GABARAP interaction with STC1. These data indicate a molecular scenario whereby GABARAP interacts with STC1 to avoid STC1-mediated trapping of CALR, allowing for the induction of ICD after treatment with ICD inducers; on the other hand, this mechanism is compromised in GABARAP null or del17p cells, and the STC1-CALR complex remains trapped in the mitochondria, resulting in ICD resistance. To functionally validate our findings in the context of the immune microenvironment, we performed mass Cytometry after T cell co-culture with DCs primed by both WT and GABARAP KO AMO1 clones. And we confirmed that treatment of GABARAP KO clones with BTZ failed to activate an efficient T cell response. In conclusion, our work identifies a unique mechanism of immune escape which may contribute to the poor clinical outcome observed in del17p HR MM patients. It further suggests that novel therapies to restore GABARAP may allow for the induction of ICD and improved patient outcome in MM. Disclosures Bianchi: Jacob D. Fuchsberg Law Firm: Consultancy; MJH: Honoraria; Karyopharm: Consultancy, Honoraria; Pfizer: Consultancy, Honoraria. Richardson: AstraZeneca: Consultancy; Regeneron: Consultancy; Protocol Intelligence: Consultancy; Secura Bio: Consultancy; GlaxoSmithKline: Consultancy; Sanofi: Consultancy; Janssen: Consultancy; Takeda: Consultancy, Research Funding; AbbVie: Consultancy; Karyopharm: Consultancy, Research Funding; Celgene/BMS: Consultancy, Research Funding; Oncopeptides: Consultancy, Research Funding; Jazz Pharmaceuticals: Consultancy, Research Funding. Chauhan: C4 Therapeutics: Current equity holder in publicly-traded company; Stemline Therapeutics, Inc: Consultancy. Munshi: Legend: Consultancy; Karyopharm: Consultancy; Amgen: Consultancy; Janssen: Consultancy; Celgene: Consultancy; Oncopep: Consultancy, Current equity holder in publicly-traded company, Other: scientific founder, Patents & Royalties; Abbvie: Consultancy; Takeda: Consultancy; Adaptive Biotechnology: Consultancy; Novartis: Consultancy; Pfizer: Consultancy; Bristol-Myers Squibb: Consultancy. Anderson: Sanofi-Aventis: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Gilead: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Millenium-Takeda: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Pfizer: Membership on an entity's Board of Directors or advisory committees; Scientific Founder of Oncopep and C4 Therapeutics: Current equity holder in publicly-traded company, Current holder of individual stocks in a privately-held company; AstraZeneca: Membership on an entity's Board of Directors or advisory committees; Mana Therapeutics: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2728-2728
Author(s):  
Yong Zhang ◽  
Christopher P. Rombaoa ◽  
Aldo M Roccaro ◽  
Susanna Obad ◽  
Oliver Broom ◽  
...  

Abstract Abstract 2728 Background. We and others have previously demonstrated that primary Waldenstrom's Macroglobulinemia (WM) and Chronic lymphocytic leukemia (CLL) cells show increased expression of microRNA-155 (miR-155), suggesting a role in regulating pathogenesis and tumor progression of these diseases. However, developing therapeutic agents that specifically target miRNAs has been hampered by the lack of appropriate delivery of small RNA inhibitors into tumor cells. We tested the effect of a novel LNA (locked nucleic acid)-modified anti-miR-155 in WM and CLL. Methods. WM and CLL cells, both cell lines (BCWM.1; MEC.1) and primary tumor cells; BCWM.1 Luc+ cells; and primary WM bone marrow (BM) stromal cells were used. WM and CLL cells were treated with antisense LNA anti-miR-155 or LNA scramble oligonucleotide. Efficiency of delivering FAM-labeled LNA into cells was determined by flow cytometry. Survival and cell proliferation were assessed by MTT and thymidine uptake assay, respectively. Synergistic effects of LNA with bortezomib were detected on BCWM.1 or MEC1 cells. Co-culture of BCWM.1 or MEC1 cells with WM bone marrow stromal cells was performed to better define the effect of the LNA-anti-miR155 in the context of the bone marrow microenvironment. miR-155 levels were detected in stromal cells from WM patients by qPCR. Co-culture of BCWM.1 or MEC1 cells with either wild-type or miR155−/− mice BM stromal cells was examined after LNA treatment. Gene expression profiling analysis was performed on BCWM.1 cells treated with either LNA anti-miR-155 or scramble control. miR-155 target gene candidates were predicted by TargetScan software. mRNA levels of miR-155, and its known target genes or gene candidates were detected by qRT-PCR. A microRNA luciferase reporter assay was used to determine whether miR-155 target candidates could be directly regulated by miR-155. mRNA levels of miR-155 targets were detected by qRT-PCR from primary WM or CLL cells treated with LNA. The activity of the LNA-anti-miR-155 was also detected in vivo using bioluminescence imaging and mRNA levels of miR-155 targets were detected by qRT-PCR ex vivo. Efficiency of introducing the FAM-labeled LNA into mice BM cells was determined by flow cytometry 1 week or 2 weeks after intravenous injection. Results. The efficiency of delivering LNA oligos into both WM and CLL-derived cell lines and primary samples was higher than 90%. LNA antimiR-155 reduced proliferation of WM and CLL-derived cell lines by 30–50%, as compared to LNA scramble control. In contrast, LNA antimiR-155 didn't exert significant cytotoxicity in BCWM.1 or MEC.1. LNA synergistically decreased BCWM.1 or MEC1 cell growth co-treated with bortezomib and decreased BCWM.1 or MEC1 cell growth co-cultured with WM BM stromal cells in vitro. A higher level of miR-155 was found in WM BM stromal cells compared to normal ones. LNA decreased BCWM.1 or MEC1 cell growth when co-cultured with BM stromal cells from miR155−/− mice compared with wild-type. We demonstrated increased expression of miR-155-known targeted genes, including CEBPβ, SOCS1, SMAD5, and several novel target candidates including MAFB, SH3PXD2A, and SHANK2, in WM cells upon LNA anti-miR-155 treatment. These target candidates were confirmed to be directly regulated by miR-155 using a luciferase reporter assay. mRNA levels of miR-155 targets were upregulated by 1.5–2 fold at 48 hr after direct incubation of the LNA with primary WM or CLL samples, indicating efficient delivery and biologic effect of the LNA in cells. Moreover, this LNA showed significant in vivo activity by inhibiting WM cell proliferation in a disseminated xenograft mouse model. Upregulation of miR-155 targeted genes were confirmed ex vivo, in WM cells isolated from the BM of treated mice compared to control. Mice BM cells were FAM positive 1 or 2 weeks after injection indicating efficient delivery of FAM-labeled LNA into cells in vivo. Summary. A novel LNA (locked nucleic acid)-modified anti-miR against miR-155 could be highly efficiently delivered into tumor cells in vivo in the bone marrow microenvironment. Anti-WM activity of LNA anti-miR-155 was confirmed both in vitro and in vivo and anti-CLL activity was confirmed in vitro. Novel miR-155 direct target genes including MAFB, SH3PXD2A, and SHANK2 were identified. These findings will help to design individualized clinical trials for WM and CLL patients with elevated levels of miR-155 in their tumor cells. Disclosures: Roccaro: Roche:. Obad:Santaris Pharma: Employment. Broom:Electroporation: Employment. Kauppinen:Santaris Pharma: Employment. Brown:Calistoga: Consultancy, Research Funding; Celgene: Honoraria, Research Funding; Genzyme: Research Funding; GSK: Research Funding. Ghobrial:Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Consultancy, Membership on an entity's Board of Directors or advisory committees; Noxxon: Consultancy, Membership on an entity's Board of Directors or advisory committees; Millennium: Research Funding; Bristol-Myers Squibb: Research Funding; Noxxon: Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 684-684
Author(s):  
Adrian Schwarzer ◽  
Matheus Oliveira ◽  
Marc-Jens Kleppa ◽  
Andy Anantha ◽  
Alan Cooper ◽  
...  

Abstract Relapsed/refractory diffuse large B-cell lymphomas (r/r-DLBCL) are a therapeutic challenge, especially in patients not suitable for high dose chemotherapy, stem cell transplantation or patients who fail CAR-T-cell therapy. r/r-DLBCLs are highly heterogeneous both clinically and molecularly, which imposes a pressing need to develop novel therapies to improve outcomes in patients independently of the molecular subtype. We describe here BTM-3566, a first-in-class compound with activity against a variety of B-cell malignancies but with greatest effect in DLBCL. BTM-3566 activates the mitochondrial integrated stress response (ISR) through a novel mechanism regulated by the mitochondrial protein FAM210B. BTM-3566 induces apoptosis in DLBCL lines in vitro and complete tumor regression in vivo in DLBCL PDX mouse models harboring genetic alterations associated with poor prognosis. BTM-3566 is an oral small molecule based on a pyrazolothiazol-backbone, developed for treatment of diffuse large B-cell lymphoma (DLBCL). BTM-3566 induces apoptosis and complete cell killing in DLBCL lines a with an IC 50 of ~200 - 500 nM. Responsive DLBCL cell lines include ABC, GCB, and double-hit and triple-hit lymphoma lines. Pharmacokinetic studies in mice showed suitability for once daily dosing, with > 50% of oral bioavailability and close to 6 hours of serum half-life. 14-day dosing in mice and dogs demonstrated excellent tolerability at therapeutic doses. BTM-3566 showed stability in human hepatocytes (IC < 5 ml/min*kg) as well and a favorable in vitro safety profile. In xenograft models using the double-hit DLBCL line SU-DHL-10, BTM-3566 treatment resulted in complete regression in all tumor-bearing animals. Most importantly, no subsequent tumor growth occurred for 2 weeks after cessation of therapy, indicating that treatment with BTM-3566 resulted in a durable complete remission in this model of double-hit DLBCL. Expansion studies into human DLBCL PDX models harboring a range of high-risk genomic alterations, including Myd88 mutations and MYC and BCL2 rearrangements, demonstrated response in 100% of the lines with complete tumor regression in 6 of 8 PDX models tested (Table 1). Transcriptome and proteome analyses revealed that BTM-3566 strongly activated the ATF4-integrated stress response (ISR), indicated by phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) and subsequent upregulation of the transcription factor ATF4. Of the four eIF2a-kinases in the human genome we determined, using CRISPR-Cas 9 gene depletion, that HRI was uniquely required for BTM-3566 eIF2a phosphorylation, induction of ATF4 ISR and apoptosis. HRI is described as being activated by mitochondrial-related stress, including heme depletion, increased ROS generation or blockage of mitochondrial ATP synthesis which result in an increase in mitochondrial proteostasis including activation of mitochondrial protease OMA1. We determined that BTM-3566 activates OMA1 without acting as a classical mitochondrial toxin. Treatment with BTM-3566 induced OMA1-dependent OPA1 processing and mitochondrial fragmentation in as little as 30 minutes of treatment, in the absence of any reduction in mitochondrial oxygen consumption or membrane depolarization. This data indicates that BTM-3566 represents a new class of compounds that activate the mitochondrial protease OMA1. Gene expression-based profiling of BTM-3566 sensitivity in over 400 cancer cell lines showed that FAM210B, a mitochondrial membrane protein, negatively correlated with response to BTM-3566. Notably, overexpression of FAM210B completely prevents OMA1 activation and causes complete resistance to BTM-3566-induced apoptosis in DLBCL cell line BJAB and the Burkitt lymphoma cell line Ramos. Thus, FAM210B serves as a strong predictor of BTM-3566 sensitivity, as well as revealing a novel mechanism of regulation of OMA1 activation. In summary, we describe here a novel, highly potent activator of the mitochondrial ISR, which is well tolerated in mice and dogs, has favorable pharmacokinetics and induces robust DLBCL regression in-vivo. An IND application in B-cell malignancies will be completed by early Q1 2022 with initiation of first in human clinical trials the first half of 2022. Figure 1 Figure 1. Disclosures Schwarzer: Bantam Pharmaceutical: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding. Anantha: Bantam Pharmaceutical: Consultancy, Current Employment, Current holder of stock options in a privately-held company. Cooper: Bantam Pharmaceutical: Consultancy. Hannink: Bantam Pharmaceutical: Research Funding. Hembrough: Bantam Pharmaceutical: Consultancy. Levine: Bantam Pharmaceutical: Consultancy, Current holder of individual stocks in a privately-held company. Luther: Bantam Pharmaceutical: Current holder of individual stocks in a privately-held company, Ended employment in the past 24 months, Membership on an entity's Board of Directors or advisory committees. Stocum: Bantam Pharmaceutical: Current Employment, Current holder of individual stocks in a privately-held company, Membership on an entity's Board of Directors or advisory committees. Liesa-Roig: Bantam Pharmaceutical: Research Funding. Kostura: Bantam Pharmaceutical: Consultancy, Current holder of stock options in a privately-held company, Patents & Royalties: Named Inventor on patents with assignment to Bantam Pharmaceutical.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 544-544
Author(s):  
Giulia Borella ◽  
Ambra Da Ros ◽  
Elena Porcù ◽  
Claudia Tregnago ◽  
Maddalena Benetton ◽  
...  

Chemotherapy still remains the pillar of treatment of children with AML, a disease in which refinements in diagnostic approaches, minimal residual disease monitoring, and patient stratification have resulted into remarkable progresses during the past decade. However, most of the recently tested, novel anti-leukemia agents failed during pre-clinical and clinical validation phases, and one main limit in AML field is the inappropriateness of current preclinical models used to study drug efficacy, this jeopardizing the advance of phase II and III clinical trials, especially for children. In light of this consideration, we aimed at creating novel robust in vitro and in vivo approaches to discover or to re-assess alternative treatments to improve the portfolio of agents active in childhood AML. For this purpose, we developed new protocols for long-term 3D-AML cultures to perform more predictable high throughput drug screening in vitro, and, once identified the best compounds, to create new pre-clinical in vivo models. We set up the bone marrow (BM) endosteal niche by using a biomimetic 3D structure, made up of engineered hydroxyapatite and collagen I, where we seeded mesenchymal stromal cells derived either from AML patients (AML-MSCs) or from healthy BM donors (h-MSCs), together with osteoblasts, endothelial cells and finally AML blasts. We studied AML cell proliferation and clonogenicity cultured in 3D. We obtained results from twenty 3D long-term cultures of different primary AML, confirming blast proliferation up to 21 days. Clonogenic potential and immunophenotype preservation of the original AML blasts was also documented. At the same time, we compared AML-MSCs with h-MSCs, finding that AML-MSCs exhibited a higher proliferation rate (40% increase proliferation at 72 and 96 hours, p<0.001), and commitment to osteogenic differentiation, this latter occurring after 7 days with respect to 21 days of h-MSCs (p<0.01). To better characterize AML-MSCs features supporting AML cell growth, we cultured AML-MSCs and h-MSCs in an inflammatory environment (IL1β, IL6 and TNFα), observing that AML-MSCs did not exert anti-inflammatory activity by HUVEC tube formation assay (n=6, p<0.001). This latter finding was supported by a peculiar secretome profile defined by mass-spectrometry revealing factors as SERPINE1, CHI3L1, TIMP1, and PTX3 being differentially secreted. Thus, a drug targeting of AML-MSCs would be desirable, and we performed a screening of 480 compounds. This screening identified 17/480 active compounds capable of reducing AML-MSCs proliferation without toxicity over h-MSCs and AML blasts. We identified one main compound able to selectively reduce AML-MSCs proliferation, that, when combined to novel therapeutic agents for AML, such as the Quizartinib, I-BET inhibitor and Dasatinib in the 3D cultures, showed a synergistic effect (CI=0.5, p<0.05) towards FLT3-ITD, MLL-rearranged or c-KIT mutated AML. We then proceeded with two pilot studies in order to define the use of this 3D-AML cultures in in vivo setting. We implanted these organoids in the back of NSG mice and monitored leukemia engraftment in the scaffolds, as well as AML dissemination in peripheral blood. We documented the niche being vascularized and well organized by immunohistochemical staining for mCD31, hCD45 and hOPN, whereas we had a low rate of success in AML dissemination out of the niche (1 AML out of 14 implanted in 15 months). On the contrary, we observed that AML cells proliferated in the 3D up to 9 months after implantation, suggesting that this system is more suitable for an easy and quick in loco drug testing. Thus, we implanted AML, after being transduced with luciferase, in the 3D niche in NSG mice and monitored luciferase activity during intra-peritoneal drug treatments. We evaluated some new and old compounds known to target leukemia cells and documented a significant reduction of luciferase in the 3D when a drug was active, supporting our 3D scaffolds as a novel useful in vivo system to screen selected drugs before the prioritization of the best one to be used in a pre-clinical setting in PDXs. In conclusion, our data support the possibility to work with long-term 3D cultures of AML in vitro to identify new drugs, and we attribute to AML-MSCs a crucial supportive role to be further considered in in vivo settings for novel combo strategies. Finally, these findings could help test new compounds to be validated in future clinical trials. Disclosures Locatelli: Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; Bellicum: Consultancy, Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Miltenyi: Honoraria; bluebird bio: Consultancy.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 887-887
Author(s):  
Aldo M Roccaro ◽  
Antonio Sacco ◽  
Phong Quang ◽  
AbdelKareem Azab ◽  
Patricia Maiso ◽  
...  

Abstract Abstract 887 Background. Stomal-cell-derived factor 1 (SDF-1) is known to be involved in bone marrow (BM) engrafment for malignant tumor cells, including CXCR4 expressing multiple myeloma (MM) cells. We hypothesized that de-adhesion of MM cells from the surrounding BM milieu through SDF-1 inhibition will enhance MM sensitivity to therapeutic agents. We therefore tested NOX-A12, a high affinity l-oligonucleotide (Spiegelmer) binder to SDF-1in MM, looking at its ability to modulate MM cell tumor growth and MM cell homing to the BM in vivo and in vitro. Methods. Bone marrow (BM) co-localization of MM tumor cells with SDF-1 expressing BM niches has been tested in vivo by using immunoimaging and in vivo confocal microscopy. MM.1S/GFP+ cells and AlexaFluor633-conjugated anti-SDF-1 monoclonal antibody were used. Detection of mobilized MM-GFP+ cells ex vivo has been performed by flow cytometry. In vivo homing and in vivo tumor growth of MM cells (MM.1S-GFP+/luc+) were assessed by using in vivo confocal microscopy and in vivo bioluminescence detection, in SCID mice treated with 1) vehicle; 2) NOX-A12; 3) bortezomib; 4) NOX-A12 followed by bortezomib. DNA synthesis and adhesion of MM cells in the context of NOX-A12 (50–200nM) treated primary MM BM stromal cells (BMSCs), in presence or absence of bortezomib (2.5–5nM), were tested by thymidine uptake and adhesion in vitro assay, respectively. Synergism was calculated by using CalcuSyn software (combination index: C.I. according to Chou-Talalay method). Results. We first showed that SDF-1 co-localizes in the same bone marrow niches of growth of MM tumor cells in vivo. NOX-A12 induced a dose-dependent de-adhesion of MM cells from the BM stromal cells in vitro. These findings were corroborated and validated in vivo: NOX-A12 induced MM cell mobilization from the BM to the peripheral blood (PB) as shown ex vivo, by reduced percentage of MM cells in the BM and increased number of MM cells within the PB of mice treated with NOX-A12 vs. control (BM: 57% vs. 45%; PB: 2.7% vs. 15%). We next showed that NOX-A12-dependent de-adhesion of MM cells from BMSCs lead to enhanced MM cell sensitivity to bortezomib, as shown in vitro, where a synergistic effect between NOX-A12 (50–100 nM) and bortezomib (2.5–5 nM) was observed (C.I.: all between 0.57 and 0.76). These findings were validated in vivo: tumor burden detected by BLI was similar between NOX-A12- and control mice whereas bortezomib-treated mice showed significant reduction in tumor progression compared to the control (P<.05); importantly significant reduction of tumor burden in those mice treated with sequential administration of NOX-A12 followed by bortezomib was observed as compared to bortezomib alone treated mice (P <.05). Similarly, NOX-A12 + bortezomib combination induced significant inhibition of MM cell homing in vivo, as shown by in vivo confocal microscopy, as compared to bortezomib used as single agent. Conclusion. Our data demonstrate that the SDF-1 inhibiting Spiegelmer NOX-A12 disrupts the interaction of MM cells with the BM milieu both in vitro and in vivo, thus resulting in enhanced sensitivity to bortezomib. Disclosures: Roccaro: Roche:. Kruschinski:Noxxon Pharma AG: Employment. Ghobrial:Novartis: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Consultancy, Membership on an entity's Board of Directors or advisory committees; Millennium: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Research Funding; Noxxon: Advisory Board, Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4274-4274 ◽  
Author(s):  
Thomas Balligand ◽  
Younes Achouri ◽  
Ilyas Chachoua ◽  
Christian Pecquet ◽  
Jean-Philippe Defour ◽  
...  

Abstract In a subset of patients suffering from myeloproliferative neoplasms (MPNs), calreticulin (CALR) exon 9 frameshift mutations are known to be responsible for the development of either essential thrombocythemia (ET) or primary myelofibrosis (PMF) (1, 2). The most prevalent mutations are a 52-bp deletion (del52, type-1 mutation) and a 5-bp TTGTC insertion (ins5, type-2 mutation). In these patients, the mutational status is almost always heterozygous. Our group and collaborators have recently shown that the pathogenic mutant CALR proteins require interaction with and activation of the thrombopoietin receptor (TpoR) for activation of the JAK-STAT pathway (3, 4). Until now, no knock-in mouse model of these diseases has been published. In this abstract, we show how we succeeded in creating such a model. We had shown that the murine CALR mutant proteins behave just like their human counterparts (5). Specifically, the del52, ins5 and del61 (61bp deletion, type-1) Calr mutations were able to transform Ba/F3 cells (murine pro-B lymphocytic cells normally dependent on IL-3 for growth) expressing the thrombopoietin receptor (TpoR) and render them cytokine-independent. Importantly, we also mutated the Ba/F3 genome using the widely adopted CRISPR/Cas9 system in order to create a 61-bp deletion of the exon 9 of Calr. This too successfully transformed the Ba/F3 cells, showing that endogenous levels of expression of a mutant CALR protein are sufficient to induce phenotype in vitro. Now, using the same approach, we injected C57BL/6J mouse zygotes with the same CRISPR/Cas9 constructs to create the same 61-bp deletion in the murine Calr gene. Out of 46 pups born from the procedure, one male pup was heterozygous for the 61-bp deletion. By in vitro fertilization, we subsequently obtained heterozygous Calr del61/WT pups. After inter-breeding the mice, we analyzed the blood of 12 Calr del61/WT males and 12 Calr WT/WT males (littermates) at three different timepoints (15, 18 and 22 weeks old) and found that the Calr del61/WT mice showed significantly higher levels of circulating platelets. Conversely, red blood and white blood cell numbers were the same between both groups at all time points. We further show that expression of a mutant CALR protein, in a heterozygous state, is sufficient to induce abnormal proliferation of megakaryocytes and develop an ET phenotype in vivo in mice. Follow-up in dynamics of the phenotype and bone marrow and spleen pathology (examination of myeloproliferation and fibrosis) allow comparison with the retroviral murine models of CALR-mutant MPNs and with the known features of the human disease. The only limitation of our model is the fact that the Calr del61 mutation is parentally acquired and widespread throughout the organism. With this new model, we aim to test the efficiency of various drugs to prevent or cure the MPN phenotype, such as ruxolitinib, a JAK2 type-1 inhibitor that is already used in clinics in patients suffering from CALR-mutated MPNs. We also now have a means to generate a high number of Calr del61/WT bone marrow cells to extensively study the oncogenic properties of the Calr mutations at different stages of the hematopoeisis. It will also be of great interest to study, if generated, a homozygous mutational status of Calr del61 in vivo. Thus, our system will shed light on the importance of the negatively charged tail of CALR and on the effects of the novel positively charged tail on myeloproliferation. References 1. Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, et al. N Engl J Med. 2013 Dec 10;369(25):2379-90. 2. Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, et al. N Engl J Med. 2013 Dec 10;369(25):2391-405. 3. Chachoua I, Pecquet C, El-Khoury M, Nivarthi H, Albu RI, Marty C, et al. Blood. 2015 Dec 14;10.1182/blood-2015-11-681932. 4. Marty C, Pecquet C, Nivarthi H, Elkhoury M, Chachoua I, Tulliez M, et al. Blood. 2015 Nov 25;10.1182/blood-2015-11-679571. 5. Balligand T, Achouri Y, Pecquet C, Chachoua I, Nivarthi H, Marty C, et al. Leukemia. 2016 Feb 29;10.1038/leu.2016.47. Disclosures Constantinescu: Teva: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Novartis: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Shire: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Personal Genetics: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 453-453
Author(s):  
Abdel Kareem A. Azab ◽  
Phong Quang ◽  
Feda Azab ◽  
John Magnani ◽  
John Patton ◽  
...  

Abstract Abstract 453 Introduction: The interaction of multiple myeloma (MM) cells with the bone marrow (BM) microenvironment, which includes stromal (BMSCs) and endothelial cells (ECs), plays a crucial role in MM pathogenesis and drug resistance. We have previously shown that the chemokine stromal cell-derived factor-1 (SDF-1), its receptor-CXCR4, and GTPases in the downstream signaling of the receptor regulate this interaction. Selectins are adhesion molecules which are involved in the primary interaction of lymphocytes with the endothelium. In this study, we have tested the expression of selectins and their ligands in MM, and explored their role in the interaction with the BM milieu and its potential therapeutic applications. Methods AND RESULTS: Flow cytometry and immunohistochemical (IHC) staining of tissue microarrays revealed that P-selectin glycoprotein ligand-1 (PSGL-1, CD162) was over expressed in MM cells from patients (n=20) and cell lines (MM1s, H929, RPMI, OPM1 and OPM2) compared to normal plasma cells (n=3). Gene expression profiling (GEP) analysis showed that the expression of PSGL-1 was directly correlated with MM stage of progression (normal plasma cells, n=15 < MGUS, n=20 < smoldering MM, n=23 < MM, n=68 p<0.01). Moreover, it was shown that both BMSCs (isolated from MM patients and HS5 cell line) and ECs (isolated from MM patients and HUVECs) had high expression of P-selectin. SDF1 treatment increased the expression of P-selectin on ECs but it had no effect on the expression of PSGL on MM cells. The interaction of PSGL and P-selectin played a major role in the adhesion of MM cell to both BMSCs and ECs, and the inhibition of this interaction either by the pan-selectin inhibitor GMI-1070 (500uM, 3hrs) or by knock-down of P-selectin expression significantly decreased (50-60%) the adhesion of MM cells to BMSCs and ECs. The CXCR4 inhibitor AMD3100 (25uM, 3hrs) similarly induced similar inhibition of adhesion, and the combination of AMD3100 and GM1070 had more profound inhibition of MM adhesion to BMSCs and ECs (p = 0.006). Both AMD3100 and GMI1070 induced MM cell de-adhesion from BMSCs and ECs, but the combination of both drugs was not additive. AMD3100, GMI1070 or their combination prevented BMSCs or ECs mediated induction of proliferation of MM cells. Moreover, it was shown that the co-culture of MM cells with BMSCs and ECs reduced their sensitivity to bortezomib (5nM, 24hrs) and dexamethasone (25nm, 24hrs) compared to MM cells cultured alone. Importantly, GMI1070 restored the sensitivity of MM cells to bortezomib and dexamethasone to the level observed without co-culture with BMSCs or ECs. These effects were next tested in vivo using an orthotopic xenograft model of MM. SCID-beige mice were injected with luciferase-expressing MM1S cells, and tumor burden was assessed bioluminescence imaging. Mice with established disease were divided into treatment groups (n=10 per group) treated with vehicle, GMI1070 by osmotic pump, velcade at 1.5 mg/kg IP weekly, or a combination of GMI1070 and bortezomib. Tumor burden was determined by bioluminescence imaging. Treatment with GMI1070 alone was not different from vehicle treated control mice. While treatment with bortezomib alone had a minimal delay in tumor progression, the combined treatment of bortezomib and GMI1070 resulted in synergistic anti-tumor efficacy (p=0.0017). Conclusion: We have shown that PSGL-1 is highly expressed in MM cells as compared to normal plasma cells, and that it plays a major role in the interaction of MM cells with the BM microenvironment in relation with the SDF1/CXCR4 axis in vitro, an effect which was inhibited by the pan-selectin inhibitor GMI1070. We also demonstrated that selectin inhibition by GMI1070 reduced MM cell proliferation induced by BMSCs and ECs sensitized MM cells to bortezomib and dexamethasone in vitro, and significantly increased the sensitivity of MM tumors to bortezomib in vivo. This information provides the rationale for future clinical trials for increasing efficacy of existing therapies through a combination with selectin inhibitors for the treatment of myeloma. Disclosures: Anderson: Millennium Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Ghobrial:Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2112-2112 ◽  
Author(s):  
John Dulos ◽  
Driessen Lilian ◽  
Marc Snippert ◽  
Marco Guadagnoli ◽  
Astrid Bertens ◽  
...  

Abstract A PRoliferation Inducing Ligand (APRIL, TNFSF13), is a ligand for the receptors BCMA and TACI. APRIL serum levels are enhanced in patients diagnosed with Multiple Myeloma (MM), Chronic Lymphocytic Leukemia (CLL), and Colorectal Carcinoma correlated with poor prognosis. Our anti-APRIL antibody blocked CLL survival and inhibited mouse B1 hyperplasia in vivo (Guadagnoli et al., 2011). APRIL is produced by cells in the bone marrow niche, including myeloid-derived cells, osteoclasts and plasmacytoid dendritic cells. APRIL critically triggers BCMA in vitro and in vivoto drive proliferation and survival of human MM cells (Tai et al., 2016). Importantly, APRIL induces resistance to lenalidomide, bortezomib and other standard-of-care drugs. Furthermore, APRIL drives expression of PD-L1, IL-10, VEGF and TGFβ forcing an immunosuppressive phenotype on BCMA+ cells. As MM survival, resistance to treatment and the immunosuppressive phenotype can be blocked by neutralizing APRIL (Tai et al., 2016), development of an antibody blocking APRIL provides a novel avenue for the treatment of MM. A novel mouse anti-human APRIL antibody hAPRIL.01A (Guadagnoli et al., 2011) initially discovered using Aduro's B-Select platform, was humanized and further engineered enhancing its stability (designated as BION-1301). The antibody binds to recombinant human APRIL with a KDof 0.4 ± 0.15 nM determined by BioLayer Interferometry and an EC50 of 0.29 ± 0.05 nM by ELISA. The epitope of BION-1301 was mapped to the BCMA and TACI binding site explaining its fully blocking capacity. Blocking potency (IC50) was 1.61 ± 0.78 nM (BCMA) and 1.29 ± 0.89 nM (TACI) respectively, corroborated by potent and complete blockade of APRIL-induced cytotoxicity of BCMA-Fas and TACI-Fas Jurkat transfectants. In vitro, BION-1301 suppressed APRIL-induced B-cell IgA and IgG class switching in a dose-dependent fashion. In vivo, BION-1301 was shown to suppress human APRIL induced T cell-independent B cell responses to NP-Ficoll. Biophysical and functional experiments indicated that BION-1301 recapitulated all characteristics of the mouse parental antibody hAPRIL.01A. To support the clinical development of BION-1301, quantitative assays were developed using several mouse-anti-human APRIL antibodies and shown to detect free and complexed APRIL in human blood samples. Results obtained with assays demonstrate that APRIL can be quantified reproducibly in human sera and overcome the drawbacks of previous assays, such as requirement of polyclonal sera, Ig adsorption, interference by human serum and reduced sensitivity. In conclusion, we have generated and functionally characterized a novel humanized APRIL neutralizing antibody, designated BION-1301. The mechanism-of-action and anti-tumor activity described for the parental antibody hAPRIL.01A in vitro and in vivo strongly support the development of BION-1301 as a single agent or in combination with lenalidomide, bortezomib, and suggest a rationale for combination with checkpoint inhibitors. BION-1301 is expected to enter clinical development in 2017. References:Guadagnoli M, Kimberley FC, Phan U, Cameron K, Vink PM, Rodermond H, Eldering E, Kater AP, van Eenennaam H, Medema JP. Development and characterization of APRIL antagonistic monoclonal antibodies for treatment of B-cell lymphomas. Blood. 2011 Jun 23;117(25):6856-65Tai YT, Acharya C, An G, Moschetta M, Zhong MY, Feng X, Cea M, Cagnetta A, Wen K, van Eenennaam H, van Elsas A, Qiu L, Richardson P, Munshi N, Anderson KC. APRIL and BCMA promote human multiple myeloma growth and immunosuppression in the bone marrow microenvironment. Blood. 2016 Jun 23;127(25):3225-36 Disclosures Dulos: Aduro Biotech Inc.: Equity Ownership. Lilian:Aduro Biotech Inc.: Equity Ownership. Snippert:Aduro Biotech Inc.: Equity Ownership. Guadagnoli:Aduro Biotech Inc.: Equity Ownership. Bertens:Aduro Biotech Inc.: Equity Ownership. David:Aduro Biotech Inc.: Equity Ownership. Anderson:Gilead: Membership on an entity's Board of Directors or advisory committees; Oncoprep: Equity Ownership; Oncoprep: Equity Ownership; Gilead: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Acetylon: Equity Ownership; Acetylon: Equity Ownership; Millennuim: Membership on an entity's Board of Directors or advisory committees; Millennuim: Membership on an entity's Board of Directors or advisory committees; C4 Therapeutics: Equity Ownership; C4 Therapeutics: Equity Ownership; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees. Eenennaam:Aduro Biotech Inc.: Equity Ownership. Elsas:Aduro Biotech Inc.: Equity Ownership.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1931-1931
Author(s):  
Cinzia Federico ◽  
Barbara Muz ◽  
Jennifer Sun ◽  
Kinan Alhallak ◽  
Justin King ◽  
...  

Abstract Proteasome inhibitors (PIs) have improved the treatment of multiple myeloma (MM) and prolonged patient survival, but several challenges remain to overcome drug-resistance and toxicity. Bone marrow microenvironment (BMM) drives tumor progression and PIs-resistance in MM; and agents that inhibit the interaction between MM and BMM have been shown to re-sensitize MM cells to therapy. However, the synchronized in vivo delivery of BMM-targeting agents with PIs has been a challenge so far. Nanoparticles offer a valuable platform to encapsulate drugs, and if functionalized, they can facilitate specific delivery to tumor, thus improving treatment efficacy and reducing off-target effects. Within the BMM, the endothelium plays a relevant tumor promoting role. By analyzing the expression of an array of markers in normal and in MM-related endothelium, we found high levels of P-selectin expression on MM-activated endothelial cells (ECs) than normal cells and on ECs collected from the BM of either MM patients or MM-bearing mice compared to their respectively healthy BMMNCs. We next sought to develop lipid nanoparticles (LNPs) targeting the MM-related endothelium, loaded with both PI and BMM-targeting agent for synchronized delivery and reversal of the BMM-induced drug resistance. At this aim, we developed targeted LNPs towards P-selectin by decorating their surface with P-selectin-glycoprotein-ligand-1 (PSGL-1). PSGL-1-targeted LNPs showed specific binding to recombinant P-selectin than identically non-targeted particles, and to MM-associated endothelium compared to healthy endothelium, both in vitro and in vivo. To reverse BMM-induced resistance, LNPs were loaded with bortezomib (BTZ) together with a BMM disrupting agent, ROCK-inhibitor (Y-27632) that inhibits the downstream signaling of the RhoA GTPase pathway, known to be instrumental to the interaction of MM cells with BMM. Consequently, we tested the effect of synchronized delivery of BTZ and Y-27632 in the same LNP on MM cell survival in co-culture with the BMM in vitro. While Y-27632-loaded LNPs did not affect cell proliferation, LNPs loaded with both Y-27632 and BTZ enhanced responsiveness of MM cells to BTZ, compared to BTZ-loaded LNPs, thus overcoming the BMM-induced resistance. Mechanistically, we observed more significant inhibition of PI3K and MAPK signaling, decrease of pRb and up-regulation of p21 and induction of pro-apoptotic pathway (caspase-3, caspase-9 and PARP) by drug-loaded LNPs, compared to free drugs. In addition, drug-loaded LNPs were able to decrease adhesion and impair the migration of MM cells to ECs. We also investigated the in vivo efficacy of BTZ/Y-27632-loaded PSGL-1-targeted LNPs in a humanized murine model of MM. The synchronized delivery of both agents using dual drug-loaded PSGL-1-targeted LNPs delayed the MM tumor progression and prolonged survival significantly more than all the controls. The synchronized delivery of both agents using dual drug-loaded PSGL-1-targeted LNPs delayed the MM tumor progression and prolonged survival significantly more than all the controls (vehicle, BTZ and Y-27632 alone or in combination as free drugs, or encapsulated in non-targeted or in PSGL-1-targeted LNPs) demonstrating that both P-selectin targeting and combination of Y-27632 with BTZ reverses the BMM-induced drug resistance and enhances the efficacy of therapy in vivo. Altogether, our data demonstrate the ability of PSGL-1-decorated LNPs to specifically target MM-BMM; to efficiently encapsulate and deliver drugs to tumor tissue; to overcome BMM-induced drug resistance in vitro and in vivo, to reduce tumor growth and prolong overall survival. This study provides the preclinical basis for future clinical trials using MM-BMM-targeted nanomedicine able to enhance the effect of PIs or other drugs for the treatment of MM. Disclosures Roccaro: GILEAD: Research Funding; AMGEN: Other: Advisory Board. Vij:Karyopharma: Honoraria, Membership on an entity's Board of Directors or advisory committees; Jansson: Honoraria, Membership on an entity's Board of Directors or advisory committees; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Jazz Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees. Azab:Cellatrix LLC: Equity Ownership, Other: Founder and owner; Targeted Therapeutics LLC: Equity Ownership, Other: Founder and owner; Ach Oncology: Research Funding; Glycomimetics: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5150-5150
Author(s):  
Rafal Zielinski ◽  
Krzysztof Grela ◽  
Stanislaw Skora ◽  
Rodrigo Jacamo ◽  
Izabela Fokt ◽  
...  

Annamycin (Ann) is an anti-tumoral anthracycline whose anti-leukemia activity is relatively unaffected by P-glycoprotein-related multidrug resistance. Unlike for the related doxorubicin (DOX), Ann accumulates in multidrug resistant cell lines, which is accompanied by DNA damage and apoptosis. In preclinical toxicology studies, in contrast to DOX, free Ann displayed a greatly reduced cardiotoxicity, while L-Ann appeared to be non-cardiotoxic. A liposomal formulation of Ann, termed L-Annamycin (L-Ann), is currently evaluated in patients with acute myeloid leukemia (AML). Anti-leukemia activity of Ann was demonstrated in several leukemia models as judged by circulating blast cytoreduction and extension of overall survival. However, the efficacy of L-Ann in the microenvironment of the bone marrow and other organ tissues remains unclear. In the current study, we assessed the anti-AML efficacy of Ann in a novel AML model that allows visualizing the dynamics of individual AML cells in vivo by two-photon microscopy. In this model, mouse AML cells bearing the MLL/ENL-FLT3/ITD[p53-/-] mutations co-express high levels of the cyan fluorescent protein mTurquoise2. Upon intravenous infusion of several tens of thousands cells into syngeneic immunocompetent C57BL6 mice, lethal AML disease reliably develops within 2 weeks. Using host mice expressing appropriate fluorescence reporter genes, the bright cyan fluorescence enables sensitive intravital imaging of individual AML cells in the context of organ architecture. Using this model in Thy1-RFP reporter mice expressing red fluorescence in all organ tissues with the blood flow marked by BSA-AF647 fluorescence, we evaluated AML cellularity reduction in the bone marrow and other organs after a single dose of L-Ann as well as in response to chronic treatment. In addition, we assessed the localization of the surviving AML cells at a high spatial resolution. We evaluated the in vivo organ biodistribution of intravenously infused L-Ann in C57BL6 mice by flow cytometry and two-photon microscopy based on the intrinsic fluorescence of the drug. In addition, we visualized the intracellular compartmentalization of L-Ann using confocal microscopy. Consistent with in vitro findings, we observed a rapid and deep reduction of AML blasts in the peripheral blood after a single dose of L-Ann in a dose-dependent manner (1-4 mg/kg). This reduction was strongly correlated with prolongation of animal survival from 14 days (vehicle) to 37 days (L-Ann 4 mg/kg once weekly started on day 10). In vitro and intravital microscopy revealed a distinct pattern of L-Ann distribution in organ tissues, which correlated in part with the local index of AML cellularity reduction and residual disease localization. Interestingly, in addition to the expected uptake of Ann in the cell's nucleus, Ann was also accumulated in the cytosol of the cells. This bi-compartmental intracellular distribution pattern contrasted with the nuclear-only localization of DOX. Administration of L-Ann early in the course of AML resulted in occasional complete responses some of which associated with resistance to AML re-challenge, suggesting capacity for anti-AML immune memory induction. This study confirms the efficacy of the drug in the model setting of syngeneic, immune-competent AML. Besides reinforcing the rationale for further development of Annamycin in AML, this study demonstrates a highly advantageous AML mouse model that is highly informative in studies of AML pharmacology, minimum residual disease (MRD), microenvironment and immunology. Disclosures Fokt: Moleculin Biotech, Inc.: Equity Ownership, Research Funding. Andreeff:Oncoceutics: Equity Ownership; Senti Bio: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Daiichi Sankyo, Inc.: Consultancy, Patents & Royalties: Patents licensed, royalty bearing, Research Funding; Jazz Pharmaceuticals: Consultancy; Celgene: Consultancy; Amgen: Consultancy; AstaZeneca: Consultancy; 6 Dimensions Capital: Consultancy; Reata: Equity Ownership; Aptose: Equity Ownership; Eutropics: Equity Ownership; Leukemia Lymphoma Society: Membership on an entity's Board of Directors or advisory committees; NCI-RDCRN (Rare Disease Cliln Network): Membership on an entity's Board of Directors or advisory committees; CLL Foundation: Membership on an entity's Board of Directors or advisory committees; BiolineRx: Membership on an entity's Board of Directors or advisory committees; German Research Council: Membership on an entity's Board of Directors or advisory committees; NCI-CTEP: Membership on an entity's Board of Directors or advisory committees; Cancer UK: Membership on an entity's Board of Directors or advisory committees; Oncolyze: Equity Ownership; Breast Cancer Research Foundation: Research Funding; CPRIT: Research Funding; NIH/NCI: Research Funding; Center for Drug Research & Development: Membership on an entity's Board of Directors or advisory committees. Priebe:Moleculin Biotech, Inc.: Consultancy, Equity Ownership, Research Funding. Zal:VueBio.com: Equity Ownership; BioLineRx: Research Funding; Daiichi-Sankyo: Research Funding; Moleculin Biotech, Inc.: Research Funding; NIH-CTEP: Research Funding; CPRIT: Research Funding; NIH/NCI: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document