scholarly journals ADAR1 Splicing Modulation As a Mechanism to Eradicate Immunologically Silent Leukemia Stem Cells

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3321-3321
Author(s):  
Leslie A Crews ◽  
Phoebe Mondala ◽  
Cayla Mason ◽  
Larisa Balaian ◽  
Wenxue Ma ◽  
...  

Abstract Secondary acute myeloid leukemia (sAML) is the most therapeutically recalcitrant form of AML with a life expectancy of less than 12 months. Secondary AML evolves from relatively prevalent myeloproliferative neoplasms (MPNs), myelodysplastic syndrome (MDS), or after chemotherapy, radiation therapy, or hematopoietic cell transplantation (HCT) that together confer a 14% risk of sAML at 15 years. Cumulative sequencing studies show that human splicing factor mutations, epigenetic spliceosome deregulation, RNA editing-induced splicing alterations, and pro-survival splice isoform switching drive dormant leukemia stem cell (LSC) generation and sAML resistance to chemotherapy and molecularly targeted agents resulting in high rates of relapse. LSC are immunologically silent in part because they activate adenosine deaminase acting on dsRNA (ADAR1), which attenuates the innate immune response. In addition, therapeutic splicing modulation has the potential to induce neoepitope formation and augment checkpoint inhibitor therapy. Thus, there is a pressing need for clinical development of splicing modulatory agents that eradicate therapy resistant LSC and reduce sAML drug resistance and relapse. Rebecsinib (17 S-FD-895) is a pharmacologically stable, potent, and selective small molecule splicing modulator that targets the SF3B core of the spliceosome at the interface of SF3B1, SF3B3 and PHF5A. We previously showed that Rebecsinib inhibits human LSC maintenance in sAML models at doses that spare normal hematopoietic stem and progenitor cells (HSPCs). In IND-enabling studies, we now demonstrate that splicing modulation with this potent agent is a pre-clinical tox-proven strategy to eradicate LSC with the potential to overcome immune checkpoint resistance via inhibition of ADAR1 splicing and activity. We further describe targeted LSC eradication that correlates with detection of unique intron-retained and exon-skipped transcripts that can be quantified by splice isoform-specific qRT-PCR and RNA-sequencing analyses and can be used as predictive biomarkers to monitor molecular responses to Rebecsinib treatment. Mechanistically, the therapeutic effects were accompanied by on-target splicing modulatory effects, including reductions in pro-survival MCL1L transcripts and splicing factor gene products such as SF3B1 and SF3B3, which form part of the splicing modulator binding pocket as well as alterations in self-renewal promoting ADAR1 and STAT3beta transcripts. In multi-species toxicology and pharmacokinetic/pharmacodynamic studies, Rebecsinib induced splicing modulation and was well-tolerated over a broad range of doses. Because of disrupted spliceosome function, SF3B1 overexpression and increased dependence on pro-survival splice isoform expression, Rebecsinib-mediated induction of pro-survival to pro-apoptotic splice isoform switching inhibits sAML LSC survival and self-renewal at doses that spare normal HSPCs in vitro and in humanized mouse models commensurate with dose-dependent changes in splicing reporter exon skipping and SF3B1, MCL1, BCL2 and CD44 isoform levels. Together, this potent and selective agent along with biomarkers of response to splicing modulation provide a sensitive method of detecting activity and mechanism of action of Rebecsinib, and demonstrate its LSC selectivity in humanized stromal co-cultures and humanized mouse models, which will have utility in future clinical development of this novel therapeutic agent. Disclosures Crews: Ionis Pharmaceuticals: Research Funding. Burkart: Algenesis: Other: Co-founder. Jamieson: Forty Seven Inc.: Patents & Royalties.

Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 776
Author(s):  
Kazutaka Terahara ◽  
Ryutaro Iwabuchi ◽  
Yasuko Tsunetsugu-Yokota

A variety of humanized mice, which are reconstituted only with human hematopoietic stem cells (HSC) or with fetal thymus and HSCs, have been developed and widely utilized as in vivo animal models of HIV-1 infection. The models represent some aspects of HIV-mediated pathogenesis in humans and are useful for the evaluation of therapeutic regimens. However, there are several limitations in these models, including their incomplete immune responses and poor distribution of human cells to the secondary lymphoid tissues. These limitations are common in many humanized mouse models and are critical issues that need to be addressed. As distinct defects exist in each model, we need to be cautious about the experimental design and interpretation of the outcomes obtained using humanized mice. Considering this point, we mainly characterize the current conventional humanized mouse reconstituted only with HSCs and describe past achievements in this area, as well as the potential contributions of the humanized mouse models for the study of HIV pathogenesis and therapy. We also discuss the use of various technologies to solve the current problems. Humanized mice will contribute not only to the pre-clinical evaluation of anti-HIV regimens, but also to a deeper understanding of basic aspects of HIV biology.


2021 ◽  
Vol 12 ◽  
Author(s):  
Takuya Yamaguchi ◽  
Ikumi Katano ◽  
Iyo Otsuka ◽  
Ryoji Ito ◽  
Misa Mochizuki ◽  
...  

Despite recent advances in immunodeficient mouse models bearing human red blood cells (hRBCs), the elimination of circulating hRBCs by residual innate immune systems remains a significant challenge. In this study, we evaluated the role of mouse complement C3 in the elimination of circulating hRBCs by developing a novel NOG substrain harboring a truncated version of the murine C3 gene (NOG-C3ΔMG2-3). Genetic C3 deletion prolonged the survival of transfused hRBCs in the circulation. Chemical depletion and functional impairment of mouse macrophages, using clodronate liposomes (Clo-lip) or gadolinium chloride (GdCl3), respectively, further extended the survival of hRBCs in NOG-C3ΔMG2-3 mice. Low GdCl3 toxicity allowed the establishment of hRBC-bearing mice, in which hRBCs survived for more than 4 weeks with transfusion once a week. In addition, erythropoiesis of human hematopoietic stem cells (hHSCs) was possible in NOG-C3ΔMG2-3/human GM-CSF-IL-3 transgenic mice with Clo-lip treatment. These findings indicate that mouse models harboring hRBCs can be achieved using NOG-C3ΔMG2-3 mice, which could facilitate studies of human diseases associated with RBCs.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 476
Author(s):  
Akihiro Mori ◽  
Soichiro Murata ◽  
Nao Tashiro ◽  
Tomomi Tadokoro ◽  
Satoshi Okamoto ◽  
...  

Humanized mouse models have contributed significantly to human immunology research. In transplant immunity, human immune cell responses to donor grafts have not been reproduced in a humanized animal model. To elicit human T-cell immune responses, we generated immune-compromised nonobese diabetic/Shi-scid, IL-2RγKO Jic (NOG) with a homozygous expression of human leukocyte antigen (HLA) class I heavy chain (NOG-HLA-A2Tg) mice. After the transplantation of HLA-A2 human hematopoietic stem cells into NOG-HLA-A2Tg, we succeeded in achieving alloimmune responses after the HLA-mismatched human-induced pluripotent stem cell (hiPSC)-derived liver-like tissue transplantation. This immune response was inhibited by administering tacrolimus. In this model, we reproduced allograft rejection after the human iPSC-derived liver-like tissue transplantation. Human tissue transplantation on the humanized mouse liver surface is a good model that can predict T-cell-mediated cellular rejection that may occur when organ transplantation is performed.


2015 ◽  
Vol 31 (11) ◽  
pp. 583-594 ◽  
Author(s):  
Michael F. Good ◽  
Michael T. Hawkes ◽  
Stephanie K. Yanow

2014 ◽  
Vol 410 ◽  
pp. 3-17 ◽  
Author(s):  
Michael A. Brehm ◽  
Michael V. Wiles ◽  
Dale L. Greiner ◽  
Leonard D. Shultz

2013 ◽  
Vol 18 (23-24) ◽  
pp. 1200-1211 ◽  
Author(s):  
Nico Scheer ◽  
Mike Snaith ◽  
C. Roland Wolf ◽  
Jost Seibler

2019 ◽  
Vol 372 ◽  
pp. 57-69 ◽  
Author(s):  
Hangyi Yan ◽  
Bhagyashree Bhagwat ◽  
David Sanden ◽  
Aarron Willingham ◽  
Alick Tan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document