scholarly journals Generation of Novel Human Red Blood Cell-Bearing Humanized Mouse Models Based on C3-Deficient NOG Mice

2021 ◽  
Vol 12 ◽  
Author(s):  
Takuya Yamaguchi ◽  
Ikumi Katano ◽  
Iyo Otsuka ◽  
Ryoji Ito ◽  
Misa Mochizuki ◽  
...  

Despite recent advances in immunodeficient mouse models bearing human red blood cells (hRBCs), the elimination of circulating hRBCs by residual innate immune systems remains a significant challenge. In this study, we evaluated the role of mouse complement C3 in the elimination of circulating hRBCs by developing a novel NOG substrain harboring a truncated version of the murine C3 gene (NOG-C3ΔMG2-3). Genetic C3 deletion prolonged the survival of transfused hRBCs in the circulation. Chemical depletion and functional impairment of mouse macrophages, using clodronate liposomes (Clo-lip) or gadolinium chloride (GdCl3), respectively, further extended the survival of hRBCs in NOG-C3ΔMG2-3 mice. Low GdCl3 toxicity allowed the establishment of hRBC-bearing mice, in which hRBCs survived for more than 4 weeks with transfusion once a week. In addition, erythropoiesis of human hematopoietic stem cells (hHSCs) was possible in NOG-C3ΔMG2-3/human GM-CSF-IL-3 transgenic mice with Clo-lip treatment. These findings indicate that mouse models harboring hRBCs can be achieved using NOG-C3ΔMG2-3 mice, which could facilitate studies of human diseases associated with RBCs.

Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 776
Author(s):  
Kazutaka Terahara ◽  
Ryutaro Iwabuchi ◽  
Yasuko Tsunetsugu-Yokota

A variety of humanized mice, which are reconstituted only with human hematopoietic stem cells (HSC) or with fetal thymus and HSCs, have been developed and widely utilized as in vivo animal models of HIV-1 infection. The models represent some aspects of HIV-mediated pathogenesis in humans and are useful for the evaluation of therapeutic regimens. However, there are several limitations in these models, including their incomplete immune responses and poor distribution of human cells to the secondary lymphoid tissues. These limitations are common in many humanized mouse models and are critical issues that need to be addressed. As distinct defects exist in each model, we need to be cautious about the experimental design and interpretation of the outcomes obtained using humanized mice. Considering this point, we mainly characterize the current conventional humanized mouse reconstituted only with HSCs and describe past achievements in this area, as well as the potential contributions of the humanized mouse models for the study of HIV pathogenesis and therapy. We also discuss the use of various technologies to solve the current problems. Humanized mice will contribute not only to the pre-clinical evaluation of anti-HIV regimens, but also to a deeper understanding of basic aspects of HIV biology.


2005 ◽  
Vol 7 (7) ◽  
pp. 675-685 ◽  
Author(s):  
Simone Difilippantonio ◽  
Arkady Celeste ◽  
Oscar Fernandez-Capetillo ◽  
Hua-Tang Chen ◽  
Bernardo Reina San Martin ◽  
...  

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3321-3321
Author(s):  
Leslie A Crews ◽  
Phoebe Mondala ◽  
Cayla Mason ◽  
Larisa Balaian ◽  
Wenxue Ma ◽  
...  

Abstract Secondary acute myeloid leukemia (sAML) is the most therapeutically recalcitrant form of AML with a life expectancy of less than 12 months. Secondary AML evolves from relatively prevalent myeloproliferative neoplasms (MPNs), myelodysplastic syndrome (MDS), or after chemotherapy, radiation therapy, or hematopoietic cell transplantation (HCT) that together confer a 14% risk of sAML at 15 years. Cumulative sequencing studies show that human splicing factor mutations, epigenetic spliceosome deregulation, RNA editing-induced splicing alterations, and pro-survival splice isoform switching drive dormant leukemia stem cell (LSC) generation and sAML resistance to chemotherapy and molecularly targeted agents resulting in high rates of relapse. LSC are immunologically silent in part because they activate adenosine deaminase acting on dsRNA (ADAR1), which attenuates the innate immune response. In addition, therapeutic splicing modulation has the potential to induce neoepitope formation and augment checkpoint inhibitor therapy. Thus, there is a pressing need for clinical development of splicing modulatory agents that eradicate therapy resistant LSC and reduce sAML drug resistance and relapse. Rebecsinib (17 S-FD-895) is a pharmacologically stable, potent, and selective small molecule splicing modulator that targets the SF3B core of the spliceosome at the interface of SF3B1, SF3B3 and PHF5A. We previously showed that Rebecsinib inhibits human LSC maintenance in sAML models at doses that spare normal hematopoietic stem and progenitor cells (HSPCs). In IND-enabling studies, we now demonstrate that splicing modulation with this potent agent is a pre-clinical tox-proven strategy to eradicate LSC with the potential to overcome immune checkpoint resistance via inhibition of ADAR1 splicing and activity. We further describe targeted LSC eradication that correlates with detection of unique intron-retained and exon-skipped transcripts that can be quantified by splice isoform-specific qRT-PCR and RNA-sequencing analyses and can be used as predictive biomarkers to monitor molecular responses to Rebecsinib treatment. Mechanistically, the therapeutic effects were accompanied by on-target splicing modulatory effects, including reductions in pro-survival MCL1L transcripts and splicing factor gene products such as SF3B1 and SF3B3, which form part of the splicing modulator binding pocket as well as alterations in self-renewal promoting ADAR1 and STAT3beta transcripts. In multi-species toxicology and pharmacokinetic/pharmacodynamic studies, Rebecsinib induced splicing modulation and was well-tolerated over a broad range of doses. Because of disrupted spliceosome function, SF3B1 overexpression and increased dependence on pro-survival splice isoform expression, Rebecsinib-mediated induction of pro-survival to pro-apoptotic splice isoform switching inhibits sAML LSC survival and self-renewal at doses that spare normal HSPCs in vitro and in humanized mouse models commensurate with dose-dependent changes in splicing reporter exon skipping and SF3B1, MCL1, BCL2 and CD44 isoform levels. Together, this potent and selective agent along with biomarkers of response to splicing modulation provide a sensitive method of detecting activity and mechanism of action of Rebecsinib, and demonstrate its LSC selectivity in humanized stromal co-cultures and humanized mouse models, which will have utility in future clinical development of this novel therapeutic agent. Disclosures Crews: Ionis Pharmaceuticals: Research Funding. Burkart: Algenesis: Other: Co-founder. Jamieson: Forty Seven Inc.: Patents & Royalties.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1847
Author(s):  
Sushmita Negi ◽  
Sheetal Saini ◽  
Nikunj Tandel ◽  
Kiran Sahu ◽  
Ravi P.N. Mishra ◽  
...  

Crohn’s disease and ulcerative colitis, two major forms of inflammatory bowel disease (IBD) in humans, afflicted in genetically predisposed individuals due to dysregulated immune response directed against constituents of gut flora. The defective immune responses mounted against the regulatory mechanisms amplify and maintain the IBD-induced mucosal inflammation. Therefore, restoring the balance between inflammatory and anti-inflammatory immunepathways in the gut may contribute to halting the IBD-associated tissue-damaging immune response. Phenotypic and functional characterization of various immune-suppressive T cells (regulatory T cells; Tregs) over the last decade has been used to optimize the procedures for in vitro expansion of these cells for developing therapeutic interventional strategies. In this paper, we review the mechanisms of action and functional importance of Tregs during the pathogenesis of IBD and modulating the disease induced inflammation as well as role of mouse models including humanized mice repopulated with the human immune system (HIS) to study the IBD. “Humanized” mouse models provide new tools to analyze human Treg ontogeny, immunobiology, and therapy and the role of Tregs in developing interventional strategies against IBD. Overall, humanized mouse models replicate the human conditions and prove a viable tool to study molecular functions of human Tregs to harness their therapeutic potential.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ryutaro Iwabuchi ◽  
Keigo Ide ◽  
Kazutaka Terahara ◽  
Ryota Wagatsuma ◽  
Rieko Iwaki ◽  
...  

Humanized mouse models are attractive experimental models for analyzing the development and functions of human dendritic cells (DCs) in vivo. Although various types of DC subsets, including DC type 3 (DC3s), have been identified in humans, it remains unclear whether humanized mice can reproduce heterogeneous DC subsets. CD14, classically known as a monocyte/macrophage marker, is reported as an indicator of DC3s. We previously observed that some CD14+ myeloid cells expressed CD1c, a pan marker for bona fide conventional DC2 (cDC2s), in humanized mouse models in which human FLT3L and GM-CSF genes were transiently expressed using in vivo transfection (IVT). Here, we aimed to elucidate the identity of CD14+CD1c+ DC-like cells in humanized mouse models. We found that CD14+CD1c+ cells were phenotypically different from cDC2s; CD14+CD1c+ cells expressed CD163 but not CD5, whereas cDC2s expressed CD5 but not CD163. Furthermore, CD14+CD1c+ cells primed and polarized naïve CD4+ T cells toward IFN-γ+ Th1 cells more profoundly than cDC2s. Transcriptional analysis revealed that CD14+CD1c+ cells expressed several DC3-specific transcripts, such as CD163, S100A8, and S100A9, and were clearly segregated from cDC2s and monocytes. When lipopolysaccharide was administered to the humanized mice, the frequency of CD14+CD1c+ cells producing IL-6 and TNF-α was elevated, indicating a pro-inflammatory signature. Thus, humanized mice are able to sustain development of functional CD14+CD1c+ DCs, which are equivalent to DC3 subset observed in humans, and they could be useful for analyzing the development and function of DC3s in vivo.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 476
Author(s):  
Akihiro Mori ◽  
Soichiro Murata ◽  
Nao Tashiro ◽  
Tomomi Tadokoro ◽  
Satoshi Okamoto ◽  
...  

Humanized mouse models have contributed significantly to human immunology research. In transplant immunity, human immune cell responses to donor grafts have not been reproduced in a humanized animal model. To elicit human T-cell immune responses, we generated immune-compromised nonobese diabetic/Shi-scid, IL-2RγKO Jic (NOG) with a homozygous expression of human leukocyte antigen (HLA) class I heavy chain (NOG-HLA-A2Tg) mice. After the transplantation of HLA-A2 human hematopoietic stem cells into NOG-HLA-A2Tg, we succeeded in achieving alloimmune responses after the HLA-mismatched human-induced pluripotent stem cell (hiPSC)-derived liver-like tissue transplantation. This immune response was inhibited by administering tacrolimus. In this model, we reproduced allograft rejection after the human iPSC-derived liver-like tissue transplantation. Human tissue transplantation on the humanized mouse liver surface is a good model that can predict T-cell-mediated cellular rejection that may occur when organ transplantation is performed.


2015 ◽  
Vol 31 (11) ◽  
pp. 583-594 ◽  
Author(s):  
Michael F. Good ◽  
Michael T. Hawkes ◽  
Stephanie K. Yanow

Sign in / Sign up

Export Citation Format

Share Document