scholarly journals Single-cell analysis of bone marrow–derived CD34+ cells from children with sickle cell disease and thalassemia

Blood ◽  
2019 ◽  
Vol 134 (23) ◽  
pp. 2111-2115 ◽  
Author(s):  
Peng Hua ◽  
Noemi Roy ◽  
Josu de la Fuente ◽  
Guanlin Wang ◽  
Supat Thongjuea ◽  
...  
Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4827-4827
Author(s):  
Caterina P. Minniti ◽  
Seda S. Tolu ◽  
Kai Wang ◽  
Zi Yan ◽  
Andrew Crouch ◽  
...  

Background Hydroxyurea (HU) is used to treat sickle cell disease (SCD) in part because of its ability to increase hemoglobin F (HbF) concentration, but the mechanism by which HU induces HbF, and the low or lack of HbF response in a fraction of the patient remains unclear. HU causes myelo-suppression and induces stress hematopoiesis, which is associated with increase production of HbF. Earlier research has shown that HbF levels in SCD patients are inversely correlated with reticulocytes, which can be secondary to: 1) HbF-induced decreased hemolysis with less needs for red blood cell (RBC) production, and 2) Myelo-suppression. It has also been shown that the number of CD34+ cells is generally lower in HU treated patients, but the overall response of the hematopoietic system in relationship to HbF has not been characterized. Here, we prospectively isolated hematopoietic stem and progenitor cells (HSPCs) from HU-treated SCD patients and characterize their hematopoietic and HbF responses. Methods Peripheral blood (PB) was collected from 19 HbSS who had been HU for >3 years and from 12 healthy controls. Frozen mono-nuclear cells were analyzed by flow cytometry using CD49f, 90 45Ra, 123, 235a, 38, 34, 33 and lineage antibodies. The number of 49f+ long-term Hematopoietic Stem Cells (LT-HSC), Multipotent Progenitors (MPPs), Common Myeloid Progenitors (CMPs), Megakaryocyte-Erythroid Progenitors (MEPs), and Granulocyte-Monocyte Progenitors (GMPs) per uL of blood or per CD34+ cells was then quantified. Results The percentages of reticulocytes per uL of blood were found to correlate positively with the concentration per uL of blood of all stem and progenitor cell populations tested (CD34 (R2 = 0.6583), LT-HSC (R2 = 0.3532), MPP (R2 = 0.2603), CMP (R2 = 0.5889), MEP (R2 = 0.2411), and GMP (R2 = 0.6911)). Statistically significant (p<0.05) inverse correlations were also observed between HbF levels and the number of CD34+/uL ( R2 = 0.2931), and the number of CMP/uL (R2 = 0.3732). Normalization of the data to the number of circulating CD34+ cells revealed that there was a strong inverse correlation between HbF levels and the percentage of circulating CMPs (R2 = 0.5424), and importantly, that this correlation was specific to the CMP population since Hb F did not correlates with any of the other HSPC populations analyzed . Analysis of the PB of 12 healthy individuals revealed that, as in SCD patients, the percentage of CMPs varied between < 10% and >60% of the total circulating CD34+ cells. Further analysis revealed that the CMP percentages in both SCD and healthy controls appeared characteristics of each individual tested since the measurements were remarkably correlated (R2 >0.7) when they were repeated on blood samples collected at intervals of two-weeks or one-year. Discussion The positive correlation between the reticulocyte and HSPC populations that we observed was previously unreported and suggests that, in first approximation, the reticulocytes could serve as a proxy for the levels of circulating HSPCs which could help assess the degree of bone marrow suppression in compliant non-responding HU-treated patients. We identified an inverse correlation between percentages of HbF and circulating CMPs in HU-treated SCD patients that is specific to these progenitors. The specificity of the correlation suggests that the major mechanism for the correlation is unlikely to be differential mobilization of CMPs to the PB since inducing mobilization generally affect all HSPCs. A depletion of the CMPs in the bone marrow of high Hb F responders is therefore a more likely mechanism. A possible mechanism for the correlation is that HU acts directly on CMPs by accelerating their differentiation leading to the relative depletion of these progenitors in high F individuals, and initiating the reprogramming of gene expression that ultimately results in high level of gamma-globin expression. Alternatively, the similar range of variability in the percentage of CMPs in HU-treated SCD patients and in healthy individuals never exposed to HU, and the observation that the percentage of circulating CMP seem to be an intrinsic characteristic of each individual suggest that the percentage of circulating CMPs might be a genetically determined marker associated with the ability to produce HbF in response to HU therapy, rather than being a consequence of the treatment. Figure Disclosures Minniti: Doris Duke Foundation: Research Funding. Manwani:Novartis: Consultancy; Pfizer: Consultancy; GBT: Consultancy, Research Funding.


2015 ◽  
Vol 43 (5) ◽  
pp. 346-351 ◽  
Author(s):  
Fabrizia Urbinati ◽  
Phillip W. Hargrove ◽  
Sabine Geiger ◽  
Zulema Romero ◽  
Jennifer Wherley ◽  
...  

2021 ◽  
Vol 86 ◽  
pp. 102508
Author(s):  
Melissa Azul ◽  
Surbhi Shah ◽  
Sarah Williams ◽  
Gregory M. Vercellotti ◽  
Alexander A. Boucher

2010 ◽  
Vol 16 (2) ◽  
pp. 263-272 ◽  
Author(s):  
Mark C. Walters ◽  
Karen Hardy ◽  
Sandie Edwards ◽  
Thomas Adamkiewicz ◽  
James Barkovich ◽  
...  

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 29-30
Author(s):  
Yuanbin Song ◽  
Rana Gbyli ◽  
Liang Shan ◽  
Wei Liu ◽  
Yimeng Gao ◽  
...  

In vivo models of human erythropoiesis with generation of circulating mature human red blood cells (huRBC) have remained elusive, limiting studies of primary human red cell disorders. In our prior study, we have generated the first combined cytokine-liver humanized immunodeficient mouse model (huHepMISTRG-Fah) with fully mature, circulating huRBC when engrafted with human CD34+ hematopoietic stem and progenitor cells (HSPCs)1. Here we present for the first time a humanized mouse model of human sickle cell disease (SCD) which replicates the hallmark pathophysiologic finding of vaso-occlusion in mice engrafted with primary patient-derived SCD HSPCs. SCD is an inherited blood disorder caused by a single point mutation in the beta-globin gene. Murine models of SCD exclusively express human globins in mouse red blood cells in the background of murine globin knockouts2 which exclusively contain murine erythropoiesis and red cells and thus fail to capture the heterogeneity encountered in patients. To determine whether enhanced erythropoiesis and most importantly circulating huRBC in engrafted huHepMISTRG-Fah mice would be sufficient to replicate the pathophysiology of SCD, we engrafted it with adult SCD BM CD34+ cells as well as age-matched control BM CD34+ cells. Overall huCD45+ and erythroid engraftment in BM (Fig. a, b) and PB (Fig. c, d) were similar between control or SCD. Using multispectral imaging flow cytometry, we observed sickling huRBCs (7-11 sickling huRBCs/ 100 huRBCs) in the PB of SCD (Fig. e) but not in control CD34+ (Fig. f) engrafted mice. To determine whether circulating huRBC would result in vaso-occlusion and associated findings in SCD engrafted huHepMISTRG-Fah mice, we evaluated histological sections of lung, liver, spleen, and kidney from control and SCD CD34+ engrafted mice. SCD CD34+ engrafted mice lungs showed an increase in alveolar macrophages (arrowheads) associated with alveolar hemorrhage and thrombosis (arrows) but not observed control engrafted mice (Fig. g). Spleens of SCD engrafted mice showed erythroid precursor expansion, sickled erythrocytes in the sinusoids (arrowheads), and vascular occlusion and thrombosis (arrows) (Fig. h). Liver architecture was disrupted in SCD engrafted mice with RBCs in sinusoids and microvascular thromboses (Fig. i). Congestion of capillary loops and peritubular capillaries and glomeruli engorged with sickled RBCs was evident in kidneys (Fig. j) of SCD but not control CD34+ engrafted mice. SCD is characterized by ineffective erythropoiesis due to structural abnormalities in erythroid precursors3. As a functional structural unit, erythroblastic islands (EBIs) represent a specialized niche for erythropoiesis, where a central macrophage is surrounded by developing erythroblasts of varying differentiation states4. In our study, both SCD (Fig. k) and control (Fig. l) CD34+ engrafted mice exhibited EBIs with huCD169+ huCD14+ central macrophages surrounded by varying stages of huCD235a+ erythroid progenitors, including enucleated huRBCs (arrows). This implies that huHepMISTRG-Fah mice have the capability to generate human EBIs in vivo and thus represent a valuable tool to not only study the effects of mature RBC but also to elucidate mechanisms of ineffective erythropoiesis in SCD and other red cell disorders. In conclusion, we successfully engrafted adult SCD patient BM derived CD34+ cells in huHepMISTRG-Fah mice and detected circulating, sickling huRBCs in the mouse PB. We observed pathological changes in the lung, spleen, liver and kidney, which are comparable to what is seen in the established SCD mouse models and in patients. In addition, huHepMISTRG-Fah mice offer the opportunity to study the role of the central macrophage in human erythropoiesis in health and disease in an immunologically advantageous context. This novel mouse model could therefore serve to open novel avenues for therapeutic advances in SCD. Reference 1. Song Y, Shan L, Gybli R, et. al. In Vivo reconstruction of Human Erythropoiesis with Circulating Mature Human RBCs in Humanized Liver Mistrg Mice. Blood. 2019;134:338. 2. Ryan TM, Ciavatta DJ, Townes TM. Knockout-transgenic mouse model of sickle cell disease. Science. 1997;278(5339):873-876. 3. Blouin MJ, De Paepe ME, Trudel M. Altered hematopoiesis in murine sickle cell disease. Blood. 1999;94(4):1451-1459. 4. Manwani D, Bieker JJ. The erythroblastic island. Curr Top Dev Biol. 2008;82:23-53. Disclosures Xu: Seattle Genetics: Membership on an entity's Board of Directors or advisory committees. Flavell:Zai labs: Consultancy; GSK: Consultancy.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 974-974 ◽  
Author(s):  
Samuel Lessard ◽  
Pauline Rimmele ◽  
Hui Ling ◽  
Kevin Moran ◽  
Benjamin Vieira ◽  
...  

High fetal hemoglobin (HbF) levels are associated with decreased severity and mortality in sickle cell disease (SCD) and beta thalassemia (BT). We have developed a novel gene-edited cell therapy using autologous hematopoietic stem and progenitor cells (HSPCs) that have been genetically modified with zinc finger nucleases (ZFNs) to reactivate HbF expression. The ZFNs target the binding motif of GATA1 (GATAA) within an intronic erythroid-specific enhancer (ESE) of BCL11A, which encodes a major transcriptional repressor of HbF. Previously, we reported successful ZFN-mediated editing of the BCL11A ESE and reactivation of HbF in both dual (granulocyte colony-stimulating factor (G-CSF) and plerixafor) and single plerixafor mobilized HSPCs(Holmes 2017, Moran 2018). Both related drug candidates, ST-400 and BIVV003, are currently in phase 1/2a clinical trials for transfusion-dependent BT (NCT03432364) and SCD (NCT03653247), respectively. Here, we performed extensive genetic and phenotypic characterization of ZFN-edited HSPCs from healthy and SCD donors. We performed single-cell characterization of BCL11A ESE-edited HSPCs from 4 healthy donors. Briefly, individual HSPCs were sorted and cultured in erythroid differentiation medium. Genomic DNA and protein lysate were collected at day 14 and 20, respectively. In total, we successfully genotyped 961 single-cell derived colonies by next-generation sequencing. The distribution was highly skewed towards biallelic-edited cells (P&lt;3x10-149) representing 94% of edited clones, suggesting that ZFN-expressing cells are likely to become edited at both alleles. We found that each edited allele contributed additively to an increase in HbF% of 15% (P=1x10-80) as measured by UPLC. Clones harboring GATAA-disrupting indels on both alleles displayed on average 34% more HbF% than WT clones (P=1x10-112). In contrast, clones with biallelic indels that left the motif intact displayed a more modest increase (13%, P=1x10-6). Overall, our data revealed that &gt;90% of edited cells were biallelic, displaying on average 27-38% more HbF% despite variation in donor baseline levels. We observed a strong enrichment of biallelic-edited homozygotes (same indel pattern at both alleles) compared to an expected random distribution (161 vs 24; P&lt;1x10-5). These clones may harbor larger deletions not captured by sequencing, as reported previously using CRISPR/Cas9 (Kosicki 2018). To address this question, we used a combination of a small amplicon sequencing assay design covering an informative SNP and a 12kb amplicon Nextera assay. We found that 27% of initially assigned homozygote clones were bona fide homozygotes (44/161) with the remaining harboring indels not originally captured. Nevertheless, most indels remained small, with 91% of indels &lt;50bp, and deletions and insertions &gt;1kb together consisting of less than 1% of alleles. The largest deletion was 4kb, but no indel extended outside the enhancer region of BCL11A or altered the coding region (&gt;26 kb away). Moreover indels &gt;50bp were not associated with enucleation levels (P=0.77), suggesting that they did not alter erythroid function. Overall, these results are consistent with previous data showing that ZFN-mediated gene editing does not impair HSPC function in vitro based on colony forming unit (CFU) production, and that injection of BIVV003 into immune-deficient NBSGW mice results in robust long-term engraftment with no impact on the number of HSPCs or their progeny, including erythrocytes. Finally, BCL11A ESE editing in HSPCs mobilized from one SCD donor resulted in a 3-fold HbF increase consistent across technical duplicates, without impacting CFU production or erythroid enucleation. Importantly, clonal analysis revealed a similar enrichment of biallelic editing (P=6x10-4) and additive HbF up-regulation, with biallelic edited cells reaching 28% more HbF% than unedited cells (50% vs 22%, P=7x10-5). Furthermore, enucleated cells differentiated from edited HSPCs showed attenuation of sickling under hypoxic conditions supporting the potential efficacy of BIVV003. Experiments in HSPCs from additional SCD donors are ongoing. Overall, our data have shown that ZFN-mediated disruption of BCL11A ESE results in enriched biallelic editing with on-target small indels, reactivates HbF and reduces sickling, supporting the potential efficacy and specificity of BIVV003 as a novel cell therapy for SCD. Disclosures Lessard: Sanofi: Employment. Rimmele:Sanofi: Employment. Ling:Sanofi: Employment. Moran:Sanofi: Employment. Vieira:Sanofi: Employment. Lin:Sanofi: Employment. Hong:Sanofi: Employment. Reik:Sangamo Therapeutics: Employment. Dang:Sangamo Therapeutics: Employment. Rendo:Sanofi: Employment. Daak:Sanofi: Employment. Hicks:Sanofi: Employment.


Author(s):  
David Rees

Inherited abnormalities of the globin genes are the commonest single-gene disorders in the world and fall into two main groups: thalassaemias and sickle cell disease. Thalassaemias are due to quantitative defects in globin chain synthesis which cause variable anaemia and ineffective erythropoiesis. Thalassaemia was initially thought to be a disease of the bones due to uncontrolled bone marrow expansion causing bony distortion, although this is now unusual with appropriate blood transfusions. Osteopenia, often severe, is a feature of most patients with thalassaemia major and intermedia, caused by bone marrow expansion, iron overload, endocrinopathy, and iron chelation. Treatment with bisphosphonates is generally recommended. Other rheumatological manifestations include arthropathy associated with the use of the iron chelator deferiprone. Sickle cell disease involves a group of conditions caused by polymerization of the abnormal -globin chain, resulting in abnormal erythrocytes which cause vaso-occlusion, vasculopathy, and ischaemic tissue damage. The characteristic symptom is acute bone pain caused by vaso-occlusion; typical episodes require treatment with opiate analgesia and resolve spontaneously by 5 days with no lasting bone damage. The frequency of acute episodes varies widely between patients. The incidence of osteomyelitis is increased, particularly with salmonella, although it is much rarer than acute vaso-occlusion. Avascular necrosis can affect the hips, and less commonly the shoulders and knees. Coincidental rheumatological disease sometimes complicates the condition, particularly systemic lupus erythematosus (SLE) which is more prevalent in populations at increased risk of sickle cell disease.


Sign in / Sign up

Export Citation Format

Share Document