scholarly journals Lack of the multidrug transporter MRP4/ABCC4 defines the PEL-negative blood group and impairs platelet aggregation

Blood ◽  
2020 ◽  
Vol 135 (6) ◽  
pp. 441-448 ◽  
Author(s):  
Slim Azouzi ◽  
Mahmoud Mikdar ◽  
Patricia Hermand ◽  
Emilie-Fleur Gautier ◽  
Virginie Salnot ◽  
...  

Abstract The rare PEL-negative phenotype is one of the last blood groups with an unknown genetic basis. By combining whole-exome sequencing and comparative global proteomic investigations, we found a large deletion in the ABCC4/MRP4 gene encoding an ATP-binding cassette (ABC) transporter in PEL-negative individuals. The loss of PEL expression on ABCC4-CRISPR-Cas9 K562 cells and its overexpression in ABCC4-transfected cells provided evidence that ABCC4 is the gene underlying the PEL blood group antigen. Although ABCC4 is an important cyclic nucleotide exporter, red blood cells from ABCC4null/PEL-negative individuals exhibited a normal guanosine 3′,5′-cyclic monophosphate level, suggesting a compensatory mechanism by other erythroid ABC transporters. Interestingly, PEL-negative individuals showed an impaired platelet aggregation, confirming a role for ABCC4 in platelet function. Finally, we showed that loss-of-function mutations in the ABCC4 gene, associated with leukemia outcome, altered the expression of the PEL antigen. In addition to ABCC4 genotyping, PEL phenotyping could open a new way toward drug dose adjustment for leukemia treatment.

Blood ◽  
1995 ◽  
Vol 85 (5) ◽  
pp. 1364-1370 ◽  
Author(s):  
S Lee ◽  
E Zambas ◽  
ED Green ◽  
C Redman

Kell is one of the major blood group systems in human erythrocytes. It is a complex system containing a large number of different antigens. Previously we cloned the Kell cDNA, which was predicted to encode an integral membrane protein with 731 amino acids. Now we have isolated overlapping genomic clones and determined the exon-intron structure of the KEL gene; it spans approximately 21.5 kb with its coding sequence being organized in 19 exons that range in size from 63 bp to 288 bp. The size of introns ranges from 93 bp to approximately 6 kb. The donor and acceptor splice sites all conform to the consensus splicing sequences. Exon 1 encodes only the initiation amino acid, methionine, and contains a consensus Sp1 binding site. The single membrane spanning region of Kell protein is encoded in exon 3 and the putative zinc endopeptidase active site is in exon 16. The amino acids encoded by the 19 exons are identical to those of a person with a common Kell phenotype, as determined by RNA polymerase chain reaction of peripheral blood. Amplification of cDNA 552 ends, derived from human fetal liver, indicated three transcription initiation sites located 30, 81, and 120 bp upstream of the initiation codon. The 552 flanking region of KEL from -176 does not contain a TATA sequence, but has possible GATA-1 binding sites and has significant promoter activity when determined by chloramphenicol acetyltransferase activity in K562 cells.


2019 ◽  
Author(s):  
Justyna Okarmus ◽  
Helle Bogetofte ◽  
Sissel Ida Schmidt ◽  
Matias Ryding ◽  
Silvia Garcia Lopez ◽  
...  

AbstractMutations in the PARK2 gene encoding parkin, an E3 ubiquitin ligase, are associated with autosomal recessive early-onset Parkinson’s disease (PD). While parkin has been implicated in the regulation of mitophagy and proteasomal degradation, the precise mechanism leading to neurodegeneration in both sporadic and familial PD upon parkin loss-of-function mutations remains unknown. Cultures of isogenic induced pluripotent stem cell (iPSC) lines with and without PARK2 knockout (KO) enable mechanistic studies of the effect of parkin deficiency in human dopaminergic neurons. In the present study, we used such cells to investigate the impact of PARK2 KO on the lysosomal compartment combining different approaches, such as mass spectrometry-based proteomics, electron microscopy (TEM) analysis and functional assays. We discovered a clear link between parkin deficiency and lysosomal alterations. PARK2 KO neurons exhibited a perturbed lysosomal morphology, displaying significantly enlarged and electron-lucent lysosomes as well as an increased total lysosomal content, which was exacerbated by mitochondrial stress. In addition, we found perturbed autophagic flux and decreased lysosomal enzyme activity suggesting an impairment of the autophagy-lysosomal pathway in parkin-deficient cells. Interestingly, activity of the GBA-encoded enzyme, β-glucocerebrosidase, was significantly increased suggesting the existence of a compensatory mechanism. In conclusion, our data provide a unique characterization of the morphology, content, and function of lysosomes in PARK2 KO neurons, thus revealing a new important connection between mitochondrial dysfunction and lysosomal dysregulation in PD pathogenesis.


Author(s):  
Sang-Yeon Lee ◽  
Hyun Been Choi ◽  
Mina Park ◽  
Il Soon Choi ◽  
Jieun An ◽  
...  

AbstractLoss-of-function variant in the gene encoding the KCNQ4 potassium channel causes autosomal dominant nonsyndromic hearing loss (DFNA2), and no effective pharmacotherapeutics have been developed to reverse channel activity impairment. Phosphatidylinositol 4,5-bisphosphate (PIP2), an obligatory phospholipid for maintaining KCNQ channel activity, confers differential pharmacological sensitivity of channels to KCNQ openers. Through whole-exome sequencing of DFNA2 families, we identified three novel KCNQ4 variants related to diverse auditory phenotypes in the proximal C-terminus (p.Arg331Gln), the C-terminus of the S6 segment (p.Gly319Asp), and the pore region (p.Ala271_Asp272del). Potassium currents in HEK293T cells expressing each KCNQ4 variant were recorded by patch-clamp, and functional recovery by PIP2 expression or KCNQ openers was examined. In the homomeric expression setting, the three novel KCNQ4 mutant proteins lost conductance and were unresponsive to KCNQ openers or PIP2 expression. Loss of p.Arg331Gln conductance was slightly restored by a tandem concatemer channel (WT-p.R331Q), and increased PIP2 expression further increased the concatemer current to the level of the WT channel. Strikingly, an impaired homomeric p.Gly319Asp channel exhibited hyperactivity when a concatemer (WT-p.G319D), with a negative shift in the voltage dependence of activation. Correspondingly, a KCNQ inhibitor and chelation of PIP2 effectively downregulated the hyperactive WT-p.G319D concatemer channel. Conversely, the pore-region variant (p.Ala271_Asp272del) was nonrescuable under any condition. Collectively, these novel KCNQ4 variants may constitute therapeutic targets that can be manipulated by the PIP2 level and KCNQ-regulating drugs under the physiological context of heterozygous expression. Our research contributes to the establishment of a genotype/mechanism-based therapeutic portfolio for DFNA2.


Blood ◽  
1996 ◽  
Vol 87 (7) ◽  
pp. 2962-2967 ◽  
Author(s):  
P Hermand ◽  
PY Le Pennec ◽  
P Rouger ◽  
JP Cartron ◽  
P Bailly

The LW blood group is carried by a 42-kD glycoprotein that belongs to the family of intercellular adhesion molecules. The LW gene is organized into three exons spanning an HindIII fragment of approximately 2.65 kb. The exon/intron architecture correlates to the structural domains of the protein and resembles that of other Ig superfamily members except that the signal peptide and the first Ig- like domain are encoded by the first exon. The 5′UT region (nucleotides -289 to +9) includes potential binding sites for various transcription factors (Ets, CACC, SP1, GATA-1, AP2) and exhibited a significant transcriptional activity after transfection in the erythroleukemic K562 cells. No obvious abnormality of the LW gene, including the 5′UT region, has been detected by sequencing polymerase chain reaction- amplified genomic DNA from RhD+ or RhD- donors and from an Rhnull variant that lacks the Rh and LW proteins on red blood cells. However, a deletion of 10 bp in exon 1 of the LW gene was identified in the genome of an LW (a- b-) individual (Big) deficient for LW antigens but carrying a normal Rh phenotype. The 10-bp deletion generates a premature stop codon and encodes a truncated protein without transmembrane and cytoplasmic domain. No detectable abnormality of the LW gene or transcript could be detected in another LW(a- b-) individual (Nic), suggesting the heterogeneity of these phenotypes.


Author(s):  
Yousef Binamer ◽  
Muzamil A. Chisti

AbstractKindler syndrome (KS) is a rare photosensitivity disorder with autosomal recessive mode of inheritance. It is characterized by acral blistering in infancy and childhood, progressive poikiloderma, skin atrophy, abnormal photosensitivity, and gingival fragility. Besides these major features, many minor presentations have also been reported in the literature. We are reporting two cases with atypical features of the syndrome and a new feature of recurrent neutropenia. Whole exome sequencing analysis was done using next-generation sequencing which detected a homozygous loss-of-function (LOF) variant of FERMT1 in both patients. The variant is classified as a pathogenic variant as per the American College of Medical Genetics and Genomics guidelines. Homozygous LOF variants of FERMT1 are a common mechanism of KS and as such confirm the diagnosis of KS in our patients even though the presentation was atypical.


2019 ◽  
Vol 19 (9) ◽  
pp. 683-687 ◽  
Author(s):  
Tawfiq Froukh ◽  
Ammar Hawwari

Background: Keratoconus (KC) is usually bilateral, noninflammatory progressive corneal ectasia in which the cornea becomes progressively thin and conical. Despite the strong evidence of genetic contribution in KC, the etiology of KC is not understood in most cases. Methods: In this study, we used whole-exome sequencing to identify the genetic cause of KC in two sibs in a consanguineous family. The Homozygous frameshift variant NM_001253826.1:c.60delC;p.Leu21Cysfs*6 was identified in the gene Nacetylgalactosaminyltransferase 14 (GALNT14). The variant does not exist in all public databases neither in our internal exome database. Moreover, no database harbours homozygous loss of function variants in the candidate gene. Result: GALNT14 catalyses the initial reaction in O-linked oligosaccharide biosynthesis, the transfer of an N-acetyl-D- galactosamine residue to a serine or threonine residue on target proteins especially Mucins. Conclusion: As alterations of mucin’s glycosylation are linked to a number of eye diseases, we demonstrate in this study an association between the truncated protein GALNT14 and KC.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Nathan L Absalom ◽  
Vivian W Y Liao ◽  
Kavitha Kothur ◽  
Dinesh C Indurthi ◽  
Bruce Bennetts ◽  
...  

Abstract Variants in the GABRB3 gene encoding the β3-subunit of the γ-aminobutyric acid type A ( receptor are associated with various developmental and epileptic encephalopathies. Typically, these variants cause a loss-of-function molecular phenotype whereby γ-aminobutyric acid has reduced inhibitory effectiveness leading to seizures. Drugs that potentiate inhibitory GABAergic activity, such as nitrazepam, phenobarbital or vigabatrin, are expected to compensate for this and thereby reduce seizure frequency. However, vigabatrin, a drug that inhibits γ-aminobutyric acid transaminase to increase tonic γ-aminobutyric acid currents, has mixed success in treating seizures in patients with GABRB3 variants: some patients experience seizure cessation, but there is hypersensitivity in some patients associated with hypotonia, sedation and respiratory suppression. A GABRB3 variant that responds well to vigabatrin involves a truncation variant (p.Arg194*) resulting in a clear loss-of-function. We hypothesized that patients with a hypersensitive response to vigabatrin may exhibit a different γ-aminobutyric acid A receptor phenotype. To test this hypothesis, we evaluated the phenotype of de novo variants in GABRB3 (p.Glu77Lys and p.Thr287Ile) associated with patients who are clinically hypersensitive to vigabatrin. We introduced the GABRB3 p.Glu77Lys and p.Thr287Ile variants into a concatenated synaptic and extrasynaptic γ-aminobutyric acid A receptor construct, to resemble the γ-aminobutyric acid A receptor expression by a patient heterozygous for the GABRB3 variant. The mRNA of these constructs was injected into Xenopus oocytes and activation properties of each receptor measured by two-electrode voltage clamp electrophysiology. Results showed an atypical gain-of-function molecular phenotype in the GABRB3 p.Glu77Lys and p.Thr287Ile variants characterized by increased potency of γ-aminobutyric acid A without change to the estimated maximum open channel probability, deactivation kinetics or absolute currents. Modelling of the activation properties of the receptors indicated that either variant caused increased chloride flux in response to low concentrations of γ-aminobutyric acid that mediate tonic currents. We therefore propose that the hypersensitivity reaction to vigabatrin is a result of GABRB3 variants that exacerbate GABAergic tonic currents and caution is required when prescribing vigabatrin. In contrast, drug strategies increasing tonic currents in loss-of-function variants are likely to be a safe and effective therapy. This study demonstrates that functional genomics can explain beneficial and adverse anti-epileptic drug effects, and propose that vigabatrin should be considered in patients with clear loss-of-function GABRB3 variants.


2021 ◽  
Vol 49 (4) ◽  
pp. 030006052110059
Author(s):  
Xinwen Zhang ◽  
Shaozhi Zhao ◽  
Hongwei Liu ◽  
Xiaoyan Wang ◽  
Xiaolei Wang ◽  
...  

Fucosidosis is a rare lysosomal storage disorder characterized by deficiency of α-L-fucosidase with an autosomal recessive mode of inheritance. Here, we describe a 4-year-old Chinese boy with signs and symptoms of fucosidosis but his parents were phenotypically normal. Whole exome sequencing (WES) identified a novel homozygous single nucleotide deletion (c.82delG) in the exon 1 of the FUCA1 gene. This mutation will lead to a frameshift which will result in the formation of a truncated FUCA1 protein (p.Val28Cysfs*105) of 132 amino acids approximately one-third the size of the wild type FUCA1 protein (466 amino acids). Both parents were carrying the mutation in a heterozygous state. This study expands the mutational spectrum of the FUCA1 gene associated with fucosidosis and emphasises the benefits of WES for accurate and timely clinical diagnosis of this rare disease.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jong Seop Kim ◽  
Hyoungseok Jeon ◽  
Hyeran Lee ◽  
Jung Min Ko ◽  
Yonghwan Kim ◽  
...  

AbstractAn 11-year-old Korean boy presented with short stature, hip dysplasia, radial head dislocation, carpal coalition, genu valgum, and fixed patellar dislocation and was clinically diagnosed with Steel syndrome. Scrutinizing the trio whole-exome sequencing data revealed novel compound heterozygous mutations of COL27A1 (c.[4229_4233dup]; [3718_5436del], p.[Gly1412Argfs*157];[Gly1240_Lys1812del]) in the proband, which were inherited from heterozygous parents. The maternal mutation was a large deletion encompassing exons 38–60, which was challenging to detect.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1790.2-1790
Author(s):  
R. M. Alcobendas ◽  
C. Quintana ◽  
J. Arostegui ◽  
C. Udaondo ◽  
S. Murias Loza ◽  
...  

Background:Few patients have been described in the literature with mutations in the Lacasa Domain containing one (LACC1) gene. Its clinical presentation usually associates sustained systemic inflammation associated with chronic polyarticular erosive arthritis. Until now, there have been multiple treatments described to try to control the disease, however, they are generally unsuccessful in the long term.Objectives:Describe the clinical course of a patient as well as the different treatments usedMethods:Clinical chart reviewResults:Female 18-year-old born from a consanguineous Moroccan couple. Mother, brother and sister with similar conditions. She started at 3 years with fever, anemia, intense elevation of acute phase reactants and symmetric polyarthritis (knees, elbows, carps, shoulders, hands and ankles). Subsequent whole exome sequencing identified c.128_129delGT mutation in the LACC1/FAMIN gene. During the course of her illness, she has received treatment with oral, intravenous and infiltrated corticosteroid, methotrexate and etanercept, without getting adequate control of the disease. In 2016, she started treatment with tocilizumab (8 mg / kg every two weeks), obtaining an acceptable control of the disease (requiring periodic infiltrations every 2-3 months due to persistent arthritis). Nonetheless, in April 2019, she consulted for clinical worsening of the arthritis and laboratory test (C reactive protein 99.7 mg / L, erythrosedimentation rate 53 mm / h, leukocytes 13,500/µL and neutrophils 10,930/µL). At that time, she discontinued therapy with tocilizumab and started tofacitinib 5 mg every 12 hours with good evolution. Since its introduction, it has not required joint infiltration again and the inflammatory parameters (persistently elevated previously) have normalized.Conclusion:The jak kinasa inhibitors may be a treatment option in those patients with bad response to conventional therapy.References:[1]Rabionet R, Remesal A, Mensa-Vilaró A, Murías S, Alcobendas R, González-Roca E, Ruiz-Ortiz E, Antón J, Iglesias E, Modesto C, Comas D, Puig A, Drechsel O, Ossowski S, Yagüe J, Merino R, Estivill X, Arostegui JI. Biallelic loss-of-function LACC1/FAMIN Mutations Presenting as Rheumatoid Factor-Negative Polyarticular Juvenile Idiopathic Arthritis. Sci Rep. 2019 Mar 14;9(1):4579Disclosure of Interests:None declared


Sign in / Sign up

Export Citation Format

Share Document