Impairment of human terminal erythroid differentiation by histone deacetylase 5 deficiency

Blood ◽  
2021 ◽  
Author(s):  
Yaomei Wang ◽  
Wei Li ◽  
Vince Schulz ◽  
Huizhi Zhao ◽  
Xiaoli Qu ◽  
...  

Histone deacetylases (HDACs) are a group of enzymes catalyzing the removal of acetyl groups from histone and non-histone proteins. HDACs have been shown to play diverse functions in a wide range of biological processes. However, their roles in mammalian erythropoiesis remain to be fully defined. We show here that of the eleven classic HDAC family members, six of them (HDAC 1,2,3 and HDAC 5,6,7) are expressed in human erythroid cells with HDAC5 most significantly up regulated during terminal erythroid differentiation. Knockdown of HDAC5 by either shRNA or siRNA in human CD34+ cells followed by erythroid cell culture led to increased apoptosis, decreased chromatin condensation, and impaired enucleation of erythroblasts. Biochemical analyses revealed that HDAC5 deficiency resulted in activation of p53 in association with increased acetylation of p53. Furthermore, while acetylation of histone 4 (H4) is decreased during normal terminal erythroid differentiation, HDAC5 deficiency led to increased acetylation of H4 (K12) in late stage erythroblasts. This increased acetylation was accompanied by decreased chromatin condensation, implying a role for H4 (K12) deacetylation in chromatin condensation. ATAC-seq and RNA-seq analyses revealed that HDAC5 knockdown leads to increased chromatin accessibility genome wide and global changes in gene expression. Moreover, pharmacological inhibition of HDAC5 by the inhibitor LMK235 also led to increased H4 acetylation, impaired chromatin condensation and enucleation. Taken together, our findings have uncovered previously unrecognized roles and molecular mechanisms of action for HDAC5 in human erythropoiesis. These results may provide insights into understanding the anemia associated with HDAC inhibitor treatment.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4256-4256
Author(s):  
Yuichi Ishikawa ◽  
Manami Maeda ◽  
Min Li ◽  
Sung-Uk Lee ◽  
Julie Teruya Feldstein ◽  
...  

Abstract Abstract 4256 Clathrin assembly lymphoid myeloid leukemia protein (CALM, also known as PICALM) is ubiquitously expressed in mammalian cells and implicated in clathrin dependent endocytosis (CDE). The CALM gene is the target of the t(10;11)(p13;q14-21) translocation, which is rare, but recurrently observed mutation in multiple types of acute leukemia. While the resultant CALM/AF10 fusion gene could act as an oncogene in vitro and in vivo in animal models, molecular mechanisms by which the fusion protein exerts its oncogenic activity remains elusive. Since CDE is implicated in the regulation of growth factor/cytokine signals, we hypothesized that the CALM/AF10 fusion oncoprotein could affect normal Calm function, leading to leukemogenesis. To determine the role of CALM and CDE in normal hematopoiesis, we generated and characterized both conventional (Calm+/−) and conditional (CalmF/F Mx1Cre+) Calm knockout mutants. While we didn't observe a gross defect in the heterozygous mutant (Calm+/−), homozygous deletion of the Calm gene (Calm-/-) resulted in late embryonic lethality. Total numbers of fetal liver (FL) cells were significantly reduced in Calm-/-embryos compared to that of control due to inefficient erythropoiesis. Proportions of mature erythroblasts (CD71-Ter119+) in FL were significantly reduced in the absence of the Calm gene. Furthermore, Calm deficient Megakaryocyte-Erythroid Progenitors (MEPs) gave rise to less CFU-E colonies when seeded in methyl cellulose plates, suggesting that Calm is required for terminal erythroid differentiation in a cell autonomous manner. To determine the role of Calm in adult hematopoiesis, we analyzed peripheral blood (PB), bone marrow (BM) and spleen of CalmF/F Mx1Cre+ mice after pIpC injection. CalmF/F Mx1Cre+ mice demonstrated hypochromic anemia, T-lymphocytopenia and thrombocytosis one month after pIpC injection. Levels of plasma transferrin and ferritin were intact in CalmF/F Mx1Cre+ mice, while plasma iron levels were increased, indicating that iron uptake is impaired in Calm deficient erythroblasts. We observed significant reduction of mature erythroblasts and erythrocytes in both BM and spleen with concomitant increase of immature erythroblasts (CD71+Ter119+) in CalmF/F Mx1Cre+ mice. The increased population mainly consists of CD71+Ter119+CD44+FSCdim polychromatophilic erythroblasts, and Benzidine staining of PB and splenic erythroblasts revealed reduced hemoglobinization in Calm deficient erythroblasts. To examine the global changes in transcriptome of CD71+Ter119+CD44+FSCdim polychromatophilic erythroblasts with or without the Calm gene, we compared mRNA expression profile by gene chip microarray analysis. Over 400 genes, including genes associated with iron metabolism and CDE pathway, were up- or down-regulated more than 1.5-fold in Calm deficient polychromatophilic erythroblasts as compared to control. Genes Set Enrichment Analysis (GSEA) revealed that multiple metabolic pathways were downregulated in Calm deficient polychromatophilic erythroblasts. Calm deficient CD71+Ter119+CD44+FSCdim polychromatophilic erythroblasts demonstrated a defect in cellular proliferation revealed by cell cycle analysis. Transferrin receptor 1 (TFR1, CD71) is highly expressed in rapidly dividing cells and erythroblasts, and uptake of iron-bound transferrin through TFR1 is the main pathway of iron intake to erythroid precursors. Since CDE is implicated in TFR1 endocytosis, we next examined surface expression levels of CD71 in Calm deficient erythroid progenitors and erythroblasts. While CD71 is normally expressed at low level in early stage of megakaryo/erythroid progenitors and highly expressed in CFU-E through polychromatophilic erythroblasts, its expression was dramatically up-regulated throughout the erythroid development in CalmF/F Mx1Cre+ mice. Up-regulation of surface CD71 expression was also evident in K562 erythroid leukemia cell lines upon ShRNA-mediated CALM knockdown. Taken together, our data indicate that CALM plays an essential role in terminal erythroid differentiation via regulating TFR1 endocytosis. Since iron is required for both erythroblast proliferation and hemoglobinization, Calm deficiency significantly impacts erythroid development at multiple levels. Disclosures: Naoe: Chugai Pharm. Co.: Research Funding; Zenyaku-Kogyo Co.: Research Funding; Kyowa-Kirin Co.: Research Funding; Dainippon-Sumitomo Pharm. Co.: Research Funding; Novartis Pharm. Co.: Research Funding; Janssen Pharm. Co.: Research Funding.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 982-982
Author(s):  
Tohru Fujiwara ◽  
Haruka Saitoh ◽  
Yoko Okitsu ◽  
Noriko Fukuhara ◽  
Yasushi Onishi ◽  
...  

Abstract Abstract 982 Background. EZH2, a core component of Polycomb repressive complex 2 (PRC2), plays a role in transcriptional repression through mediating trimethylation of histone H3 at lysine 27 (H3K27), and is involved in various biological processes, including hematopoiesis. Overexpression of EZH2 has been identified in a wide range of solid tumors as well as hematological malignancies. Recent studies indicated that 3-deazaneplanocin A (DZNep), an inhibitor of EZH2, preferentially induces apoptosis in cancer cells, including acute myeloid leukemia and myelodysplastic syndromes, implying that EZH2 may be a potential new target for epigenetic treatment. On the other hand, whereas PRC2 complex has been reported to participate in epigenetic silencing of a subset of GATA-1 target genes during erythroid differentiation (Yu et al. Mol Cell 2009; Ross et al. MCB 2012), the impact of DZNep on erythropoiesis has not been evaluated. Method. The K562 erythroid cell line was used for the analysis. The cells were treated with DZNep at doses of 0.2 and 1 microM for 72 h. Quantitative ChIP analysis was performed using antibodies to acetylated H3K9 and GATA-1 (Abcam). siRNA-mediated knockdown of EZH2 was conducted using Amaxa nucleofection technology™ (Amaxa Inc.). For transcription profiling, SurePrint G3 Human GE 8 × 60K (Agilent) and Human Oligo chip 25K (Toray) were used for DZNep-treated and EZH2 knockdown K562 cells, respectively. Gene Ontology was analyzed using the DAVID Bioinformatics Program (http://david.abcc.ncifcrf.gov/). Results. We first confirmed that DZNep treatment decreased EZH2 protein expression without significantly affecting EZH2 mRNA levels, suggesting that EZH2 was inhibited at the posttranscriptional level. We also confirmed that DZNep treatment significantly inhibited cell growth. Interestingly, the treatment significantly induced erythroid differentiation of K562 cells, as determined by benzidine staining. Transcriptional profiling with untreated and DZNep-treated K562 cells (1 microM) revealed that 789 and 698 genes were upregulated and downregulated (> 2-fold), respectively. The DZNep-induced gene ensemble included prototypical GATA-1 targets, such as SLC4A1, EPB42, ALAS2, HBA, HBG, and HBB. Concomitantly, DZNep treatment at both 0.2 and 1 microM upregulated GATA-1 protein level as determined by Western blotting, whereas the effect on its mRNA levels was weak (1.02- and 1.43-fold induction with 0.2 and 1 microM DZNep treatment, P = 0.73 and 0.026, respectively). Furthermore, analysis using cycloheximide treatment, which blocks protein synthesis, indicated that DZNep treatment could prolong the half-life of GATA-1 protein, suggesting that DZNep may stabilize GATA-1 protein, possibly by affecting proteolytic pathways. Quantitative ChIP analysis confirmed significantly increased GATA-1 occupancy as well as increased acetylated H3K9 levels at the regulatory regions of these target genes. Next, to examine whether the observed results of DZNep treatment were due to the direct inhibition of EZH2 or hitherto unrecognized effects of the compound, we conducted siRNA-mediated transient knockdown of EZH2 in K562 cells. Quantitative RT-PCR analysis demonstrated that siRNA-mediated EZH2 knockdown had no significant effect on the expression of GATA-1 as well as erythroid-lineage related genes. Furthermore, transcription profiles of the genes in the quantitative range of the array were quite similar between control and EZH2 siRNA-treated K562 cells, with a correlation efficient of 0.977. Based on our profiling results, we are currently exploring the molecular mechanisms by which DZNep promotes erythroid differentiation of K562 cells. Conclusion. DZNep promotes erythroid differentiation of K562 cells, presumably through a mechanism not directly related to EZH2 inhibition. Our microarray analysis of DZNep-treated K562 cells may provide a better understanding of the mechanism of action of DZNep. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 4 (7) ◽  
pp. 1464-1477 ◽  
Author(s):  
Emilie-Fleur Gautier ◽  
Marjorie Leduc ◽  
Meriem Ladli ◽  
Vincent P. Schulz ◽  
Carine Lefèvre ◽  
...  

Abstract Murine-based cellular models have provided and continue to provide many useful insights into the fundamental mechanisms of erythropoiesis, as well as insights into the pathophysiology of inherited and acquired red cell disorders. Although detailed information on many aspects of these cell models is available, comprehensive proteomic data are lacking. This is a critical knowledge gap, as proteins are effectors of most biologic processes. To address this critical unmet need, proteomes of the murine cell lines Friend erythroleukemia (MEL), GATA1 erythroid (G1ER), and embryonic stem cell–derived erythroid progenitor (MEDEP) and proteomes of cultured murine marrow–derived erythroblasts at different stages of terminal erythroid differentiation were analyzed. The proteomes of MEDEP cells and primary murine erythroid cells were most similar, whereas those of MEL and G1ER cells were more distantly related. We demonstrated that the overall cellular content of histones does not decrease during terminal differentiation, despite strong chromatin condensation. Comparison of murine and human proteomes throughout terminal erythroid differentiation revealed that many noted transcriptomic changes were significantly dampened at the proteome level, especially at the end of the terminal differentiation process. Analysis of the early events associated with induction of terminal differentiation in MEDEP cells revealed divergent alterations in associated transcriptomes and proteomes. These proteomic data are powerful and valuable tools for the study of fundamental mechanisms of normal and disordered erythropoiesis and will be of broad interest to a wide range of investigators for making the appropriate choice of various cell lines to study inherited and acquired diseases of the erythrocyte.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3877-3877
Author(s):  
Shilpa Hattangadi ◽  
Karly Burke ◽  
Harvey Lodish

Abstract Abstract 3877 Members of the nuclear transport receptor family of importins and exportins regulate the passage of proteins between the nucleus and cytoplasm. Although evolutionarily conserved across several species, Exportin 7 (Xpo7 or RanBP16) and its cargo are not well understood. In our study, we find that Xpo7 is highly erythroid-specific, as all other exportins are downregulated during terminal erythroid differentiation, a process including the induction of a highly specialized erythroid expression program, a set number of 3–5 terminal cell divisions, and chromatin condensation and eventual enucleation. Xpo7, in contrast, is highly induced during terminal erythropoiesis. Using retroviral shRNA knockdown of Xpo7 in in vitro fetal liver erythroid cell cultures, we demonstrate that exportin 7 is necessary for normal cellular proliferation and terminal erythroid differentiation, specifically for normal enucleation. Through microarray and biocomputational analysis of mRNA isolated from the knockdown cultures, we have found that the promoters of genes that are dysregulated after Xpo7 knockdown are enriched for binding sites for the activating transcription factor 4 (ATF4). Given that the erythroid phenotype of the ATF4 knockout mouse is very similar to the specific erythroid defects we observe in our in vitro knockdown analysis, our data suggests that either ATF4 or its binding protein may be Xpo7's cargo during terminal erythroid differentiation. Ongoing studies aimed at confirming this mechanism, the interaction between ATF4 and Xpo7, and the role and cargo of Xpo7 in terminal erythroid differentiation, are underway. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 21 (18) ◽  
pp. 6686
Author(s):  
Yu Ah Hong ◽  
Ji Eun Kim ◽  
Minjee Jo ◽  
Gang-Jee Ko

Sirtuins (SIRTs) are class III histone deacetylases (HDACs) that play important roles in aging and a wide range of cellular functions. Sirtuins are crucial to numerous biological processes, including proliferation, DNA repair, mitochondrial energy homeostasis, and antioxidant activity. Mammals have seven different sirtuins, SIRT1–7, and the diverse biological functions of each sirtuin are due to differences in subcellular localization, expression profiles, and cellular substrates. In this review, we summarize research advances into the role of sirtuins in the pathogenesis of various kidney diseases including acute kidney injury, diabetic kidney disease, renal fibrosis, and kidney aging along with the possible underlying molecular mechanisms. The available evidence indicates that sirtuins have great potential as novel therapeutic targets for the prevention and treatment of kidney diseases.


Blood ◽  
2010 ◽  
Vol 116 (25) ◽  
pp. 5670-5678 ◽  
Author(s):  
Sonia Poirault-Chassac ◽  
Emmanuelle Six ◽  
Cyril Catelain ◽  
Mélanie Lavergne ◽  
Jean-Luc Villeval ◽  
...  

Abstract The effects of Notch signaling on human megakaryocytic and erythroid differentiation were investigated by exposing human CD34+ progenitor cells to an immobilized chimeric form of the Notch ligand, Delta-like4 (Dll4Fc). Exposure of human cord blood CD34+ cells to Dll4Fc induced a modest enhancement of erythroid cell production. Conversely, under megakaryocytic culture conditions, Dll4Fc strongly impaired platelet production by reducing the generation of mature CD41a+CD42b+ megakaryocytes (MKs) and platelet-forming cells. The inhibitory activity of Dll4 on terminal MK differentiation was confirmed by culturing CD34+ cells onto Dll-4–expressing stroma cells (engineered to express the membrane-anchored form of Dll4). The reduced production of mature CD41a+CD42+ cells was rescued by inhibiting Notch signaling either with the N-N-(3,5-difluorophenacetyl-L-alanyl)-S-phenylglycine t-butyl ester γ-secretase inhibitor or the dominant-negative version of Mastermind. Dll4 impaired the generation of mature CD41a+CD42b+ cells and proplatelet formation without affecting earlier steps of MK differentiation, such as production of megakaryocytic/erythroid progenitors and colony-forming units–MKs. This blockade was accompanied by a modulation of the transcriptional program of megakaryocytic differentiation. All these results indicate that Dll4/Notch signaling inhibits human terminal MK differentiation.


Author(s):  
Yunxiao Ren ◽  
Junwei Zhu ◽  
Yuanyuan Han ◽  
Pin Li ◽  
Jing Wu ◽  
...  

Erythroid differentiation is a dynamic process regulated by multiple factors, while the interaction between long non-coding RNAs and chromatin accessibility and its influence on erythroid differentiation remains unclear. To elucidate this interaction, we employed hematopoietic stem cells, multipotent progenitor cells, common myeloid progenitor cells, megakaryocyte-erythroid progenitor cells, and erythroblasts from human cord blood as an erythroid differentiation model to explore the coordinated regulatory functions of lncRNAs and chromatin accessibility by integrating RNA-Seq and ATAC-Seq data. We revealed that the integrated network of chromatin accessibility and lncRNAs exhibits stage-specific changes throughout the erythroid differentiation process, and that the changes at the EB stage of maturation are dramatic. We identified a subset of stage-specific lncRNAs and transcription factors (TFs) that associate with chromatin accessibility during erythroid differentiation, in which lncRNAs are key regulators of terminal erythroid differentiation via a lncRNA-TF-gene network. LncRNA PCED1B-AS1 was revealed to regulate terminal erythroid differentiation by coordinating GATA1 dynamically binding to the chromatin and interacting with cytoskeleton network during erythroid differentiation. DANCR, another lncRNA that is highly expressed at the MEP stage, was verified to promote erythroid differentiation by compromising megakaryocyte differentiation and coordinating with chromatin accessibility and TFs, such as RUNX1. Overall, our results identified the associated network of lncRNAs and chromatin accessibility in erythropoiesis and provide novel insights into erythroid differentiation and abundant resources for further study.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 8-8
Author(s):  
Harry Lesmana ◽  
Georgios E Christakopoulos ◽  
Mary Risinger ◽  
Haripriya Sakthivel ◽  
Omar Niss ◽  
...  

Abstract Several members of the Ras-GTPases have been shown to play major roles as molecular switches in various signaling pathways in hematopoietic cells. The roles of Ras/MAPKs/ERK signaling pathways in EPO-induced erythroid differentiation have been explored in the past on animal models. Recently, the Ras/RalGEFs/Ral pathway has been a focus of research in oncology given its roles in tumorigenesis. However, its role in normal human erythropoiesis is poorly understood. The seven RalGEF family members are guanine nucleotide exchange factors with unique as well as overlapping roles. They bridge activated Ras to activation of RalA and RalB while they have also been shown to promote Akt activation. Recently, we identified and characterized a homozygous splicing variant (c.1580+4T>A) in RGL2 (Ral Guanine Nucleotide Dissociation Stimulator-Like 2) gene, one of the RalGEFs, in a 16 month-old female patient with a recessive form of familial syndromic pancytopenia, more severe in the erythroid lineage with transfusion-dependent anemia, hepatosplenomegaly, liver fibrosis, and cardiac dysfunction. We verified by RT-PCR that this splicing variant was associated by a decrease in the RGL2 expression levels by 70-96% in the white blood cells and reticulocytes of the patient. We hypothesized that decreased RGL2 expression leads to defective human erythropoiesis by altering terminal erythroid differentiation, erythroblast cell cycle progression and/or apoptosis. To test our hypothesis, we transduced human bone marrow derived CD34+ cells (donated by healthy volunteers under an IRB-approved research protocol in our institution) with lentivirus encoding shRNA targeting RGL2 mRNA and then cultured them in a previously validated 3-phase culture system that recapitulates erythropoiesis ex vivo. A scrambled shRNA sequence was used as control. The efficiency of the shRNAs used to knock-down (KD) RGL2 expression was initially validated by qRT-PCR after transduction of K562 cells. Our study demonstrated that knockdown of RGL2 expression resulted in decreased erythroid cell growth in ex vivo erythropoiesis accompanied by increased apoptosis. We further showed that knockdown of RGL2 expression also led to delayed terminal erythroid differentiation by flow cytometric analysis using glycophorin A (GPA), band 3, and α4-integrin as markers of maturing erythroblasts. This finding was corroborated by morphology studies using Wright staining in cytospins from RGL2-KD cultures and control. Together, our studies indicate an essential role for RGL2 and the Ras/RGL2/Ral pathway in human erythropoiesis, affecting both terminal erythroid differentiation and apoptosis. Our findings not only provide insights into regulation of normal erythropoiesis but also indicate that RGL2 may be a novel candidate gene associated with inherited bone marrow failure syndromes. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 308-308
Author(s):  
Sahoko Matsuoka ◽  
Atsushi Hirao ◽  
Fumio Arai ◽  
Keiyo Takubo ◽  
Kana Miyamoto ◽  
...  

Abstract Inactivation of the retinoblastoma (Rb) gene results in embryonic lethality due to severe anemia and increased nucleated erythrocytes by day14. However, molecular mechanisms of the function of Rb in erythroid differentiation have been unclear. Recent studies have suggested that Rb has both intrinsic and extrinsic roles on erythroid differentiation. Using Rb-deficient (Rb−/−) embryos(E12), we showed that Rb regulates terminal erythroid differentiation through inhibition of apoptosis mediated by NFKB. Enucleation of erythroblasts was impaired in semisolid culture of Rb−/− hematopoietic progenitors in fetal liver. The lethally-irradiated recipient mice transplanted with Rb−/− hematopoietic stem cells (HSCs) showed severe anemia with splenomegaly, whereas the number of leukocytes and platelets were normal. In Rb−/− recipient mice, the nucleated erythrocytes and reticulocytes were significantly increased in the peripheral blood. We analyzed cell surface markers for erythroid lineage (TER119 and CD71) in the enlarged spleen. A block of erythroid differentiation at the early erythroblast stage (TER119high CD71high), accompanied with increased apoptosis, was observed in the recipient mice with Rb−/− HSCs. We speculated that the defect in the erythroid differentiation of Rb−/− HSCs might be caused by inappropriate cell death. Thus, we examined expression of apoptosis-related genes in early erythroblasts (CD71high Ter119high) and observed decrease of Bcl-XL expression. To clarify the function of Bcl-XL, we introduced exogenous cDNA of mouse Bcl-XL with GFP (Bcl-XL ires GFP) or GFP alone as control into HSCs and then transplanted them to lethally irradiated mice. From the point of CD71 and Ter119 expression pattern in GFP positive cells, Rb−/− erythoblasts still showed the block in differentiation. In contrast, overexpression of Bcl-XL in Rb−/− erythoblasts inhibited inappropriated apoptosis and restore the differentiation capacity. Further, we found that inactivation of NFKB, but not STAT5 in Rb−/− erythroblasts. Treatment of NFKB inhibitor suppressed erythroid differentiation, accompanied by enucleation, and also inhibited upregulation of Bcl-XL. These data demonstrates that Rb is essential for erythroid differentiation through inhibition of apoptosis mediated by NFKB.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4846-4846
Author(s):  
Yue Jin ◽  
Yidi Guo ◽  
Dongxue Liang ◽  
Yue Li ◽  
Zhe Li ◽  
...  

Abstract GATA factors play important role in hematopoiesis. In particular, GATA2 is critical for maintenance of hematopoietic stem and progenitor cells (HS/PCs) and GATA1 is required for erythropoiesis. GATA1 and GATA2 are expressed in reciprocal patterns during erythroid differentiation. It was shown that GATA1 occupied the -2.8Kb regulatory element and mediated repression of the GATA2 promoter in terminally differentiating erythroid cells. However, the detailed molecular mechanisms that control the enhancer/promoter activities of the GATA2 gene remain to be elucidated. In this report, we found that LSD1 and TAL1 co-localize at GATA2 1S promoter through ChIP and double-ChIP assays in murine erythroleukemia (MEL) cells. To further test whether LSD1 and its mediated H3K4 demethylation is important for repression of the GATA2 gene during erythroid differentiation, we silenced LSD1 expression in both MEL cells and mouse ES cells using retrovirus mediated shRNA knockdown and induced them to differentiate into erythroid cells with DMSO and EPO, respectively. GATA2 expression was elevated while the level of GATA1 was repressed by RT-qPCR. Furthermore, consistent with the GATA witch hypothesis, ChIP analysis revealed that the levels of H3K4me2 were increased at the GATA2 1S promoter.  In addition, knock-down of LSD1 in MEL cells results in inhibition of erythroid cell differenciation and attenuation of MEL cell proliferation and survival. Thus, our data reveal that LSD1 involved in control of terminal erythroid differentiation by regulating GATA switch. The LSD1 histone demethylase complex may be recruited to the GATA2 1S promoter by interacting with TAL1. The H3K4 demethylation activity of LSD1 leads to downregulation of the active H3K4m2 mark at the GATA2 promoter that alters chromatin structure and represses transcription of the GATA2 genes. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document