Regulation of Erythropoiesis by Histone Methyltransferase EZH2 Inhibitor 3-Deazaneplanocin A (DZNep)

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 982-982
Author(s):  
Tohru Fujiwara ◽  
Haruka Saitoh ◽  
Yoko Okitsu ◽  
Noriko Fukuhara ◽  
Yasushi Onishi ◽  
...  

Abstract Abstract 982 Background. EZH2, a core component of Polycomb repressive complex 2 (PRC2), plays a role in transcriptional repression through mediating trimethylation of histone H3 at lysine 27 (H3K27), and is involved in various biological processes, including hematopoiesis. Overexpression of EZH2 has been identified in a wide range of solid tumors as well as hematological malignancies. Recent studies indicated that 3-deazaneplanocin A (DZNep), an inhibitor of EZH2, preferentially induces apoptosis in cancer cells, including acute myeloid leukemia and myelodysplastic syndromes, implying that EZH2 may be a potential new target for epigenetic treatment. On the other hand, whereas PRC2 complex has been reported to participate in epigenetic silencing of a subset of GATA-1 target genes during erythroid differentiation (Yu et al. Mol Cell 2009; Ross et al. MCB 2012), the impact of DZNep on erythropoiesis has not been evaluated. Method. The K562 erythroid cell line was used for the analysis. The cells were treated with DZNep at doses of 0.2 and 1 microM for 72 h. Quantitative ChIP analysis was performed using antibodies to acetylated H3K9 and GATA-1 (Abcam). siRNA-mediated knockdown of EZH2 was conducted using Amaxa nucleofection technology™ (Amaxa Inc.). For transcription profiling, SurePrint G3 Human GE 8 × 60K (Agilent) and Human Oligo chip 25K (Toray) were used for DZNep-treated and EZH2 knockdown K562 cells, respectively. Gene Ontology was analyzed using the DAVID Bioinformatics Program (http://david.abcc.ncifcrf.gov/). Results. We first confirmed that DZNep treatment decreased EZH2 protein expression without significantly affecting EZH2 mRNA levels, suggesting that EZH2 was inhibited at the posttranscriptional level. We also confirmed that DZNep treatment significantly inhibited cell growth. Interestingly, the treatment significantly induced erythroid differentiation of K562 cells, as determined by benzidine staining. Transcriptional profiling with untreated and DZNep-treated K562 cells (1 microM) revealed that 789 and 698 genes were upregulated and downregulated (> 2-fold), respectively. The DZNep-induced gene ensemble included prototypical GATA-1 targets, such as SLC4A1, EPB42, ALAS2, HBA, HBG, and HBB. Concomitantly, DZNep treatment at both 0.2 and 1 microM upregulated GATA-1 protein level as determined by Western blotting, whereas the effect on its mRNA levels was weak (1.02- and 1.43-fold induction with 0.2 and 1 microM DZNep treatment, P = 0.73 and 0.026, respectively). Furthermore, analysis using cycloheximide treatment, which blocks protein synthesis, indicated that DZNep treatment could prolong the half-life of GATA-1 protein, suggesting that DZNep may stabilize GATA-1 protein, possibly by affecting proteolytic pathways. Quantitative ChIP analysis confirmed significantly increased GATA-1 occupancy as well as increased acetylated H3K9 levels at the regulatory regions of these target genes. Next, to examine whether the observed results of DZNep treatment were due to the direct inhibition of EZH2 or hitherto unrecognized effects of the compound, we conducted siRNA-mediated transient knockdown of EZH2 in K562 cells. Quantitative RT-PCR analysis demonstrated that siRNA-mediated EZH2 knockdown had no significant effect on the expression of GATA-1 as well as erythroid-lineage related genes. Furthermore, transcription profiles of the genes in the quantitative range of the array were quite similar between control and EZH2 siRNA-treated K562 cells, with a correlation efficient of 0.977. Based on our profiling results, we are currently exploring the molecular mechanisms by which DZNep promotes erythroid differentiation of K562 cells. Conclusion. DZNep promotes erythroid differentiation of K562 cells, presumably through a mechanism not directly related to EZH2 inhibition. Our microarray analysis of DZNep-treated K562 cells may provide a better understanding of the mechanism of action of DZNep. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3872-3872
Author(s):  
Yuta Mishima ◽  
Satoru Miyagi ◽  
Atsunori Saraya ◽  
Masamitsu Negishi ◽  
Mitsuhiro Endoh ◽  
...  

Abstract Abstract 3872 Bromodomain-containing protein 1 (Brd1, initially designated as BR140-LIKE; BRL) contains a bromodomain, two plant homology domain (PHD) zinc fingers, and a proline-tryptophan-tryptophan-proline (PWWP) domain, three types of modules characteristic of chromatin regulators. Recently, BRD1 appeared to belong to the BRPF family which includes BRPF1, BRD1/BRPF2, and BRPF3. Among them, BRPF1 is known to be a subunit of the MOZ H3 histone acetyltransferase (HAT) complex. BRD1 has been proposed to be additional subunit of the MOZ H3 HAT complex on the analogy of BRPF1. However, its molecular function remains elusive. To elucidate the biological functions of BRD1, we generated Brd1-null mice and found that they die in utero. Brd1-/- embryos were alive and recovered at nearly the expected Mendelian ratio at 12.5 days postcoitum (dpc) but died by 15.5 dpc. Brd1-/- embryos at 12.5 dpc were pale and the cell number of fetal livers, in which fetal hematopoiesis occurs, was decreased to about 20% of the control. Cytological analysis revealed that Brd1-/- fetal livers had profoundly fewer erythroblasts at maturation stages beyond proerythroblasts compared to wild-type fetal livers. Flow cytometric analysis of Brd1-/- fetal livers revealed a significant accumulation of CD71+Ter119- proerythroblasts and a reduction in CD71+Ter119+ and CD71-Ter119+ maturating erythroblasts. A drastic increase in AnnexinV+ apoptotic cells was detected in the CD71+Ter119+ and CD71-Ter119- cell fractions in Brd1-/- fetal livers. These findings suggested that severe anemia caused by compromised differentiation and/or survival of erythroblasts accounts for embryonic lethality of Brd1-/- embryos. To understand the mechanism underlying defective erythropoiesis in Brd1-null embryos, we performed biochemical analyses and found that Brd1 bridges the HAT, HBO1 but not MOZ, and its activator protein, ING4, to form an enzymatically active HAT complex. Forced expression of Brd1 promoted erythroid differentiation of K562 cells, while Brpf1, which preferentially binds to MOZ, had no significant effect. Correspondingly, depletion of Hbo1 by Hbo1 knockdown perturbed erythroid differentiation of mouse fetal liver progenitors. Of note, the level of global acetylation of histone H3 at lysine 14 (H3K14) was specifically decreased in Brd1-deficient erythroblasts. These results collectively implied that acetylation of H3K14 catalyzed by the Hbo1-Brd1 complex has a crucial role in fetal liver erythropoiesis. To identify the downstream targets for the HBO1-BRD1 complex, we performed the ChIP-on-chip analysis in K562 cells and found that BRD1 and HBO1 largely co-localize on the genome, especially on the promoters of erythroid transcription factor genes. ChIP analysis revealed that acetylation of H3K14 at the promoters of erythroid transcription factor genes, including Gata1, Gata2, Tal1, Stat5a, and ETO2, were profoundly diminished in the Brd1-deficient erythroblasts. Among these target genes, we focused on Gata1, which plays a central role in erythropoiesis, and carried out complementation experiments with Gata1 using a Gata1 retrovirus. Exogenous Gata1, but not Bcl-xL, efficiently improved proliferative capacity and survival of Brd1-deficient erythroid progenitors and also restored, at least partially, their impaired differentiation. These results clearly showed that the Hbo1-Brd1 complex is required for the acetylation of H3K14 at the promoters of erythroid transcription factor genes, thereby is crucial for erythropoiesis in fetal liver. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Author(s):  
Yaomei Wang ◽  
Wei Li ◽  
Vince Schulz ◽  
Huizhi Zhao ◽  
Xiaoli Qu ◽  
...  

Histone deacetylases (HDACs) are a group of enzymes catalyzing the removal of acetyl groups from histone and non-histone proteins. HDACs have been shown to play diverse functions in a wide range of biological processes. However, their roles in mammalian erythropoiesis remain to be fully defined. We show here that of the eleven classic HDAC family members, six of them (HDAC 1,2,3 and HDAC 5,6,7) are expressed in human erythroid cells with HDAC5 most significantly up regulated during terminal erythroid differentiation. Knockdown of HDAC5 by either shRNA or siRNA in human CD34+ cells followed by erythroid cell culture led to increased apoptosis, decreased chromatin condensation, and impaired enucleation of erythroblasts. Biochemical analyses revealed that HDAC5 deficiency resulted in activation of p53 in association with increased acetylation of p53. Furthermore, while acetylation of histone 4 (H4) is decreased during normal terminal erythroid differentiation, HDAC5 deficiency led to increased acetylation of H4 (K12) in late stage erythroblasts. This increased acetylation was accompanied by decreased chromatin condensation, implying a role for H4 (K12) deacetylation in chromatin condensation. ATAC-seq and RNA-seq analyses revealed that HDAC5 knockdown leads to increased chromatin accessibility genome wide and global changes in gene expression. Moreover, pharmacological inhibition of HDAC5 by the inhibitor LMK235 also led to increased H4 acetylation, impaired chromatin condensation and enucleation. Taken together, our findings have uncovered previously unrecognized roles and molecular mechanisms of action for HDAC5 in human erythropoiesis. These results may provide insights into understanding the anemia associated with HDAC inhibitor treatment.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1543-1543
Author(s):  
Yanfei Xu ◽  
Tanushri Sengupta ◽  
Alexander C. Minella

Abstract Abstract 1543 A growing body of evidence highlights the importance of microRNAs in regulating the expression of mediators of cell cycle progression. A theme emerging from these studies is that microRNAs participate in feedback or feed-forward circuits to provide bistability for key transition points in the cell cycle. We previously have shown that proper regulation of cyclin E activity is required for normal erythroid cell maturation in vivo, using cyclin ET74AüT393A knock-in mice, which have markedly dysregulated cyclin E due to its failure to interact with the Fbw7 ubiquitin ligase complex. We hypothesized that we could identify novel, microRNA-based molecular circuitry for maintaining appropriate levels of cyclin E activity by screening cyclin E knock-in erythroblasts for alterations in microRNA expression. We analyzed data we obtained from multiplex real-time PCR arrays comparing the expression of over 500 microRNAs in cyclin ET74A T393A knock-in versus wild-type erythroblasts (Ter119+/CD71+) and found down-regulated expression of a number of microRNAs targeting CDK inhibitors. We also identified down-regulated expression of potential microRNA regulators of Fbw7 expression. We found that overexpression of miR-223, in particular, significantly reduces Fbw7 mRNA levels, increases endogenous cyclin E protein and activity levels, and increases genomic instability. We next confirmed that miR-223 targets the Fbw7 3’ untranslated region. We then found that reduced miR-223 expression leads to increased Fbw7 expression and decreased cyclin E activity. Finally, we found that miR-223 expression in K562 cells is responsive to acute alterations in cyclin E regulation by the Fbw7 pathway and that dysregulated Fbw7 expression alters the erythroid differentiation capacity of these cells. Mir-223 plays an important role in myeloid and erythroid differentiation by regulating multiple substrates involved in these maturation programs. Here, we identify Fbw7 as a novel target of miR-223. Our data also indicate that miR-223 modulates Fbw7 expression as part of a homeostatic mechanism to regulate cyclin E activity and provide the first evidence that activity of the SCFFbw7 ubiquitin ligase can be controlled by the microRNA pathway. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4846-4846
Author(s):  
Yue Jin ◽  
Yidi Guo ◽  
Dongxue Liang ◽  
Yue Li ◽  
Zhe Li ◽  
...  

Abstract GATA factors play important role in hematopoiesis. In particular, GATA2 is critical for maintenance of hematopoietic stem and progenitor cells (HS/PCs) and GATA1 is required for erythropoiesis. GATA1 and GATA2 are expressed in reciprocal patterns during erythroid differentiation. It was shown that GATA1 occupied the -2.8Kb regulatory element and mediated repression of the GATA2 promoter in terminally differentiating erythroid cells. However, the detailed molecular mechanisms that control the enhancer/promoter activities of the GATA2 gene remain to be elucidated. In this report, we found that LSD1 and TAL1 co-localize at GATA2 1S promoter through ChIP and double-ChIP assays in murine erythroleukemia (MEL) cells. To further test whether LSD1 and its mediated H3K4 demethylation is important for repression of the GATA2 gene during erythroid differentiation, we silenced LSD1 expression in both MEL cells and mouse ES cells using retrovirus mediated shRNA knockdown and induced them to differentiate into erythroid cells with DMSO and EPO, respectively. GATA2 expression was elevated while the level of GATA1 was repressed by RT-qPCR. Furthermore, consistent with the GATA witch hypothesis, ChIP analysis revealed that the levels of H3K4me2 were increased at the GATA2 1S promoter.  In addition, knock-down of LSD1 in MEL cells results in inhibition of erythroid cell differenciation and attenuation of MEL cell proliferation and survival. Thus, our data reveal that LSD1 involved in control of terminal erythroid differentiation by regulating GATA switch. The LSD1 histone demethylase complex may be recruited to the GATA2 1S promoter by interacting with TAL1. The H3K4 demethylation activity of LSD1 leads to downregulation of the active H3K4m2 mark at the GATA2 promoter that alters chromatin structure and represses transcription of the GATA2 genes. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1479-1479 ◽  
Author(s):  
Alireza Ghamari ◽  
Gabriela Pregerning ◽  
Ernest Fraenkel ◽  
Alan B. Cantor

Abstract Erythroid differentiation is controlled by the dynamic exchange of GATA family transcription factors. During early erythroid maturation, high GATA2 levels activate progenitor genes such as c-kit-, c-myc, and GATA2 itself. In contrast, GATA1 levels are low in early progenitor cells, but rise during terminal maturation. During this process GATA1 turns off GATA2 controlled early progenitor genes and activates terminal maturation genes, such as globin genes, heme biosynthesis enzymes, and iron transporters. This involves the exchange of GATA1 for GATA2 at key chromatin sites, the so-called "GATA factor switch". GATA factor switching is facilitated by the much shorter half-life of GATA2 (~30-60 min) compared to GATA1 (>4-6 hrs). We and others recently demonstrated that the E3 ubiquitin ligase adaptor protein FBW7 contributes to GATA2's relative instability. This prompted us to dissect the role of FBW7 during GATA switching and erythroid differentiation. We deleted the Fbw7 gene using CRISPR/Cas9 gene editing in the inducible G1-ER murine erythroid cell line. This resulted in the delayed clearance of GATA2 during differentiation. RNA-seq analysis at an early time points (7 hr) demonstrated impaired repression of GATA2 regulated genes and reduced activation of GATA1 target genes. Globally, altered gene expression was enriched for GATA factor switch genes. This ultimately resulted in delayed erythroid maturation. We also found that Fbw7 mRNA transcript levels increase during erythroid maturation in wild type cells. We identified a site ~40kb upstream of the Fbw7 gene transcriptional start site, which is itself a GATA factor switch site. We propose that FBW7 facilitates GATA factor switching by promoting the clearance of GATA2 from GATA factor switch sites. Moreover, we suggest that GATA factor switching at the Fbw7 locus itself reinforces the commitment of erythroid cells to terminal maturation, by enhancing the clearance of GATA2 and other Fbw7 progenitor target gene proteins such as c-Myc and c-Myb. As Fbw7 recognition of GATA2 requires phosphorylation of GATA2's degron motif, this suggests that signaling pathways, acting through Fbw7, may modulate erythroid maturation kinetics. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 21 (15) ◽  
pp. 5475 ◽  
Author(s):  
Manuela Pennisi ◽  
Giuseppe Lanza ◽  
Luca Falzone ◽  
Francesco Fisicaro ◽  
Raffaele Ferri ◽  
...  

Increasing evidence suggests that Severe Acute Respiratory Syndrome-coronavirus-2 (SARS-CoV-2) can also invade the central nervous system (CNS). However, findings available on its neurological manifestations and their pathogenic mechanisms have not yet been systematically addressed. A literature search on neurological complications reported in patients with COVID-19 until June 2020 produced a total of 23 studies. Overall, these papers report that patients may exhibit a wide range of neurological manifestations, including encephalopathy, encephalitis, seizures, cerebrovascular events, acute polyneuropathy, headache, hypogeusia, and hyposmia, as well as some non-specific symptoms. Whether these features can be an indirect and unspecific consequence of the pulmonary disease or a generalized inflammatory state on the CNS remains to be determined; also, they may rather reflect direct SARS-CoV-2-related neuronal damage. Hematogenous versus transsynaptic propagation, the role of the angiotensin II converting enzyme receptor-2, the spread across the blood-brain barrier, the impact of the hyperimmune response (the so-called “cytokine storm”), and the possibility of virus persistence within some CNS resident cells are still debated. The different levels and severity of neurotropism and neurovirulence in patients with COVID-19 might be explained by a combination of viral and host factors and by their interaction.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1169-1169
Author(s):  
Julie A. Lambert ◽  
Nicolas Goardon ◽  
Patrick Rodriguez ◽  
Sabine Herblot ◽  
Pierre Thibault ◽  
...  

Abstract As highly proliferative erythroid progenitors commit to terminal differentiation, they also progressively undergo growth arrest. To determine the mechanisms underlying the appropriate timing of erythroid gene expression and those associated with growth cessation, we analyzed the dynamical composition of the multiprotein complex nucleated by the bHLH transcription factor SCL, a crucial regulator of erythropoiesis that absolutely requires interaction with other factors to activate transcription. In progenitor cells, the SCL complex marks a subset of erythroid specific genes (alpha-globin, P4.2, glycophorin A) that are transcribed later in differentiating cells, conducting cells toward terminal maturation. To unravel the regulation of transcription by SCL, we used tagging/proteomics approaches in two differentiation-inducible erythroid cell lines, coupled with binding assays to immobilized DNA templates and chromatin immunoprecipitation. Our analyses reveal that the core complex comprised of known proteins (SCL, GATA-1, LMO2, Ldb1 and E2A) and two additional E protein family members, HEB and E2-2, did not change with differentiation. Strikingly, this complex recruits HDAC1-2 in undifferentiated cells which were exchanged with TRRAP, a chromatin remodelling factor, upon differentiation, suggesting an epigenetic regulation of erythroid differentiation mediated by the core SCL complex. Finally, we identified the corepressor ETO2 targeted via this complex through direct interaction with E2A/HEB. In vivo, ETO2 represses the transcription of SCL target genes both in transient assays and in chromatin. During erythroid differentiation, ETO2 remains associated with the SCL complex bound to erythroid promoters. However, the stoichiometry of ETO2 and SCL/HEB changes as SCL and HEB levels increase with erythroid differentiation, both in nuclear extracts and on DNA. To determine the functional consequence of this imbalance in activator to co-repressor ratio, we delivered ETO2 siRNA in primary hematopoietic cells and found an accelerated onset of SCL target genes on induction of erythroid differentiation, and conversely, these genes were decreased following ectopic ETO2 expression. Strikingly, inhibition of ETO2 expression in erythroid progenitors arrests cell proliferation, indicating that ETO2 is required for their expansion. We therefore analyzed gene expression in purified erythroid progenitors and differentiating erythroid cells (E1-E5) and found an inverse correlation between the mRNA levels of ETO2 and cyclin-dependent kinase inhibitors. Moreover, ETO2 siRNA treatment of primary erythroid progenitors results in increased p21 CDKI and Gfi1b expression, as assessed by real-time PCR. Finally, we show by chromatin immunoprecipitation that Gfi-1b, p21 and p27, are direct targets of the SCL- ETO2 complex. We therefore conclude that ETO2 regulates the erythroid lineage fate by repressing SCL marked erythroid genes in undifferentiated cells, and by controlling the expansion of erythroid progenitors. Our study elucidates the dual function of ETO2 in the erythroid lineage and sheds light on epigenetic mechanisms coordinating red blood cell proliferation and differentiation.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1462-1462
Author(s):  
Michael Tallack ◽  
Thomas Whitington ◽  
Brooke Gardiner ◽  
Eleanor Wainwright ◽  
Janelle Keys ◽  
...  

Abstract Abstract 1462 Poster Board I-485 Klf1/Eklf regulates a diverse suite of genes to direct erythroid cell differentiation from bi-potent progenitors. To determine the local cis-regulatory contexts and transcription factor networks in which Klf1 works, we performed Klf1 ChIP-seq using the SOLiD deep sequencing platform. We mapped more than 10 million unique 35mer tags and found ∼1500 sites in the genome of primary fetal liver erythroid cells are occupied by endogenous Klf1. Many reside within well characterised erythroid gene promoters (e.g. b-globin) or enhancers (e.g. E2f2 intron 1), but some are >100kb from any known gene. We tested a number of Klf1 bound promoter and intragenic sites for activity in erythroid cell lines and zebrafish. Our data suggests Klf1 directly regulates most aspects of terminal erythroid differentiation including synthesis of the hemoglobin tetramer, construction of a deformable red cell membrane and cytoskeleton, bimodal regulation of proliferation, and co-ordination of anti-apoptosis and enucleation pathways. Additionally, we suggest new mechanisms for Klf1 co-operation with other transcription factors such as those of the gata, ets and myb families based on over-representation and spatial constraints of their binding motifs in the vicinity of Klf1-bound promoters and enhancers. Finally, we have identified a group of ∼100 Klf1-occupied sites in fetal liver which overlap with Klf4-occupied sites in ES cells defined by Klf4 ChIP-seq. These sites are associated with genes controlling the cell cycle and proliferation and are Klf4-dependent in skin, gut and ES cells, suggesting a global paradigm for Klfs as regulators of differentiation in many, if not all, cell types. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1352-1352
Author(s):  
Yannick Lippka ◽  
Basant Kumar Thakur ◽  
Julia Skokowa ◽  
Karl Welte

Abstract Abstract 1352 Poster Board I-374 Severe congenital neutropenia (CN) is a heterogeneous disorder of hematopoiesis characterized by a maturation arrest of granulopoiesis at the level of promyelocytes with peripheral blood absolute neutrophil counts below 0.5 × 10/l. G-CSF treatment increases blood neutrophil numbers in more than 90% of individuals with CN. CN is also considered as a pre-leukemic syndrome, since ca. 20% of CN patients develop AML/MDS. Recently we found that NAMPT, a protein involved in biosynthesis of NAD+ was significantly increased in CN patients treated with G-CSF as compared to healthy individuals (Skokowa et al, Nature Medicine, 2009). Increased NAD+ levels correlated with the elevated levels of SIRT1, an enzyme involved in deacetylation of several histone and non -histone proteins (e.g. FOXO3a) by utilising NAD+. In search of the downstream factors regulated by G-CSF/ NAMPT /SIRT1 pathway, we found elevated levels of FOXO3a protein in CN patients treated with G-CSF compared to healthy controls or patients with other types of neutropenia. Therefore, we were interested whether NAMPT/ NAD+ -dependent activated SIRT1 affects FOXO3a levels. Indeed we observed that overexpression of NAMPT leads to the upregulation of FOXO3a protein in 293T cells and endogenous FOXO3a interacts with endogenous SIRT1 in both 293T cells and promyelocytic cell line NB4. The compound FK866 which specifically inhibits NAMPT has recently entered clinical trials as a potential chemotherapeutic agent. As acetylation of FOXO3a is considered to be important for its tumor suppressor function we asked if inhibition of NAMPT using FK866 increases the acetylation of FOXO3a. Indeed we show that acetylation level of FOXO3a is enhanced when 293T and NB4 cells were treated with FK866. Furthermore, increased acetylation of FOXO3a correlates with the decreased interaction between FOXO3a and SIRT1 in 293T cells after treatment with FK866. GADD45, a protein involved in DNA damage repair, is a well known target of FOXO3a. We found that in CD33+ myeloid progenitor cells from G-CSF treated CN patients with high NAMPT / SIRT1 / FOXO3a levels also had low GADD45 mRNA levels. We performed reporter gene assay using luciferase construct containing wild type GADD45 promoter and observed that SIRT1 enhances the FOXO3a mediated downregulation of GADD45 promoter and interestingly NAD+ further augments this effect. Taken together we hypothesized that NAMPT/NAD+ activated SIRT1 mediates deacetylation and activation of FOXO3a protein, leading to downregulation of target genes (e.g. GADD45) with tumor suppression functions which might possibly be involved in the leukemic transformation in CN patients. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4254-4254
Author(s):  
Daniel Garcia Santos ◽  
Jesse Eisenberg ◽  
Matthias Schranzhofer ◽  
Prem Ponka

Abstract Abstract 4254 Heme is indispensable for the function of all aerobic cells as a prosthetic group of innumerable proteins. However, “free heme” (uncommitted) can initiate the formation of free radicals and cause lipid peroxidation, which can lead to cellular damage and tissue injury. Therefore, the rate of heme biosynthesis and catabolism must be well balanced by tight control mechanisms. The highest amounts of organismal heme (75-80%) are present in circulating red blood cells (RBC), whose precursors synthesize heme with rates that are at least one order of magnitude higher (on the per cell basis) than those in the liver – the second most active heme producer in the body. The degradation of heme is exclusively carried out by heme oxygenases 1 and 2 (HO1 and HO2), which catalyze the rate-limiting step in the oxidative degradation of heme. Although the heme-inducible HO isoform, HO1, has been extensively studied in hepatocytes and many other non-erythroid cells, virtually nothing is known about the expression of HO1 in developing RBC. Similarly, it is unknown whether HO1 plays any role in erythroid cell development under physiological or pathophysiological conditions. Using both a murine erythroleukemia cell line (MEL) and primary erythroid cells isolated from mouse fetal livers, we have demonstrated that during erythroid differentiation HO1 is up-regulated at both mRNA and protein levels. This increase in HO1 can be prevented by succinylacetone (SA), an inhibitor of heme synthesis that blocks 5-aminolevulinic acid dehydratase. These data suggest that in developing RBC, in addition to the continuous assembly of heme with globin chains, there is an increase in levels of uncommitted heme, which upregulates HO1 expression. Additionally, we have shown that down-regulation of HO1 via siRNA increased hemoglobinization in differentiating MEL cells. In contrast, induction of HO1 expression by NaAsO2 reduced the hemoglobinization of MEL cells. This effect could be reversed to control levels by the addition of HO1 inhibitor tin-protophorphyrin (SnPP). These results show that in differentiating erythroid cells the balance between levels of heme and HO1 have to be tightly regulated to maintain hemoglobinization at appropriate levels. Our results lead us to propose that disturbances in HO1 expression could play a role in some pathophysiological conditions such as thalassemias. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document