CMV exposure drives long-term CD57+ CD4 memory T cell inflation following allogeneic stem cell transplant

Blood ◽  
2021 ◽  
Author(s):  
Albert C. Yeh ◽  
Antiopi Varelias ◽  
Anupama Reddy ◽  
Sierra M. Barone ◽  
Stuart Olver ◽  
...  

Donor and recipient cytomegalovirus (CMV) serostatus correlate with transplant related mortality that is associated with reduced survival following allogeneic stem cell transplant (SCT). Prior epidemiologic studies have suggested that CMV seronegative recipients (R-) receiving a CMV seropositive graft (D+) experience inferior outcomes compared to other serostatus combinations, an observation that appears independent of viral reactivation. We therefore investigated the hypothesis that prior donor CMV exposure irreversibly modifies immunologic function after SCT. We identified a CD4+/CD57+/CD27- T cell subset that was differentially expressed between D+ and D- transplants and validated results with 120 patient samples. This T cell subset represents an average of 2.9% (D-/R-), 18% (D-/R+), 12% (D+/R-), and 19.6% (D+/R+) (p<0.0001) of the total CD4+ T cell compartment and stably persists for at least several years post-SCT. Even in the absence of CMV reactivation post-SCT, D+/R- transplants displayed a significant enrichment of these cells compared to D-/R- transplants (p=0.0078). These are effector memory cells (CCR7-/ CD45RA+/-) that express T-bet, EOMES, granzyme B, secrete Th1 cytokines, and are enriched in CMV-specific T cells. These cells are associated with decreased T cell receptor diversity (p<0.0001) and reduced proportions of major histocompatibility class II expressing classical monocytes (p<0.0001), myeloid (p=0.024), and plasmacytoid dendritic cells (p=0.0014). These data describe a highly expanded CD4+ T cell population and putative mechanisms by which prior donor or recipient CMV exposure may create a lasting immunologic imprint following SCT, providing a rationale for using D- grafts for R- transplant recipients.

2016 ◽  
Vol 51 (12) ◽  
pp. 1549-1555 ◽  
Author(s):  
E H Phillips ◽  
A Hodson ◽  
O Hermine ◽  
A Bazarbachi ◽  
K Cwynarski

2018 ◽  
Vol 2018 ◽  
pp. 1-4
Author(s):  
Parikshit Padhi ◽  
Margarita Topalovski ◽  
Radwa El Behery ◽  
Eduardo S. Cantu ◽  
Ramadevi Medavarapu

Chronic Myelogenous Leukemia in blast crisis can manifest as either myeloid (more common) or lymphoid blast crisis. Most lymphoblastic crises are of B-cell lineage. T-cell blast crisis is extremely rare, with only a few reported cases. We present a case of a middle-aged man who was diagnosed with CML on peripheral blood and bone marrow biopsy. Because of a generalized lymphadenopathy noted at the time of diagnosis, a lymph node biopsy was also performed, which revealed a T-cell lymphoblastic leukemia/lymphoma, BCR/ABL1 positive, with clonal evolution. This is a very rare manifestation of CML in blast crisis with no standard treatment and with poor outcomes despite chemotherapy or allogeneic stem cell transplant. Given its rarity, it would be difficult to develop standard chemotherapy protocols. We believe the treatment for this condition should be similar to any lymphoid blast crisis. The patient was treated with induction chemotherapy (hyper-CVAD regimen) plus dasatinib for 3 cycles followed by sibling-donor allogeneic stem cell transplant and is currently on maintenance dasatinib and has minimal residual disease at this time.


2021 ◽  
Vol 27 (3) ◽  
pp. S421-S422
Author(s):  
Edward Robert Scheffer Cliff ◽  
Thomas Eliot Lew ◽  
Piers Blombery ◽  
Michael Dickinson ◽  
Constantine S. Tam ◽  
...  

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3912-3912 ◽  
Author(s):  
Maria Chiara Finazzi ◽  
Cristina Boschini ◽  
Janice Ward ◽  
Charles Craddock ◽  
Alessandro Rambaldi ◽  
...  

Abstract Introduction Graft-versus-Host Disease (GvHD) is one of the leading causes of mortality and morbidity following allogeneic stem cell transplant. In vivo T cell depletion by alemtuzumab as part of the transplant conditioning is an effective strategy to reduce the risk of GvHD. While it is recognised that the overall incidence of GvHD is reduced by alemtuzumab, the incidence of chronic GvHD as defined by the National Institute of Health (NIH) consensus criteria, the impact on outcome, and the pattern of organ involvement have not been defined yet in this transplant setting. Methods Consecutive patients (n = 323) undergoing allogeneic stem cell transplantation at the Queen Elizabeth Hospital, Birmingham, between January 1 2008 and June 30 2012 were reviewed in this retrospective, single centre study. Medical records were examined and data regarding the development of GvHD were collected; NIH consensus criteria for diagnosis and staging of chronic GvHD were stringently applied. Clinical characteristics of GvHD occurring in patients transplanted following T cell depletion by alemtuzumab administration (n=248) were compared with those of patients transplanted with a T cell replete graft (n=75). Patients receiving alemtuzumab were mainly treated with reduced-intensity conditioning protocols, while patients in the no-T-cell depletion group were mainly treated with a myeloablative, sibling transplant. Results After a median follow up of 38.4 months, the cumulative incidence (CI) of grade II-IV classic acute GvHD was 35% and 48% for patients transplanted respectively with or without T cell depletion by alemtuzumab (p= 0.041, Figure 1); with a CI of grade III-IV classic acute GvHD of 13% and 27% (p=0.007). The 2-years CI of grade II-IV late acute GvHD was not significantly different in the two groups (20% and 23% for patients respectively treated with or without alemtuzumab, p=0.589, Figure 2). T cell depletion by alemtuzumab significantly reduces the 3 years cumulative incidence of classic chronic GvHD (5% versus 31%, p<0.0001, Figure 3.A), but without a significant difference in the incidence of overlap syndrome between patients with and without T cell depletion (3 years CI respectively 6% and 7%, p=0.839, Figure 3.B). The pattern of organ involvement by classic acute GvHD was similar in patients with and without T cell depletion. The pattern of organ involvement by late acute GvHD in the alemtuzumab group was, however, significantly different compared to the T cell replete group (skin-gut-liver involvement reported respectively in 83%-28%-4% of patients and 56%-48%-20% of patients, p=0.003). Distribution of organ involvement by classic chronic and overlap syndrome was similar in the two groups; however, it seems that alemtuzumab prevents the development of lung GvHD (lung GvHD developed in 4 patients over the 75 patients of the no-T-cell depletion group, while none of the 248 patients transplanted with alemtuzumab experienced lung GvHD). In a multivariate analysis, the development of chronic GvHD was an independent predictor of higher mortality risk (HR 1.66, p = 0.04) and severe NIH global score at peak was confirmed as a poor prognostic factor for survival (HR 2.27, p=0.02). The negative impact of chronic GvHD and of the severe forms of chronic GvHD was independent of age and alemtuzumab administration. Conclusion This retrospective analysis provides for the first time data on the incidence rates of NIH-defined GvHD categories in patients transplanted after T cell depletion by alemtuzumab. Patients transplanted with alemtuzumab experienced a lower incidence of classic acute and classic chronic GvHD compared to patients not receiving T cell depletion. In contrast, alemtuzumab conditioning appeared to have no effect on the incidence of late acute GvHD or overlap syndrome, suggesting that these two entities of GvHD are driven by different immunological mechanisms as compared to classic acute and classic chronic GvHD. We also confirmed the utility of the NIH classification of GvHD and of the NIH global severity score to predict survival in alemtuzumab-conditioned allogeneic stem cell transplant. Disclosures No relevant conflicts of interest to declare.


2005 ◽  
Vol 202 (3) ◽  
pp. 379-386 ◽  
Author(s):  
Mark Cobbold ◽  
Naeem Khan ◽  
Batoul Pourgheysari ◽  
Sudhir Tauro ◽  
Dorothy McDonald ◽  
...  

Stem cell transplantation is used widely in the management of a range of diseases of the hemopoietic system. Patients are immunosuppressed profoundly in the early posttransplant period, and reactivation of cytomegalovirus (CMV) remains a significant cause of morbidity and mortality. Adoptive transfer of donor-derived CMV-specific CD8+ T cell clones has been shown to reduce the rate of viral reactivation; however, the complexity of this approach severely limits its clinical application. We have purified CMV-specific CD8+ T cells from the blood of stem cell transplant donors using staining with HLA–peptide tetramers followed by selection with magnetic beads. CMV-specific CD8+ cells were infused directly into nine patients within 4 h of selection. Median cell dosage was 8.6 × 103/kg with a purity of 98% of all T cells. CMV-specific CD8+ T cells became detectable in all patients within 10 d of infusion, and TCR clonotype analysis showed persistence of infused cells in two patients studied. CMV viremia was reduced in every case and eight patients cleared the infection, including one patient who had a prolonged history of CMV infection that was refractory to antiviral therapy. This novel approach to adoptive transfer has considerable potential for antigen-specific T cell therapy.


2016 ◽  
Vol 89 (4) ◽  
pp. 685-695 ◽  
Author(s):  
Isabel Corrales ◽  
Carlos Solano ◽  
Paula Amat ◽  
Estela Giménez ◽  
Rafael de la Cámara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document