SHMT2 inhibition disrupts the TCF3 transcriptional survival program in Burkitt lymphoma

Blood ◽  
2020 ◽  
Author(s):  
Anne C Wilke ◽  
Carmen Doebele ◽  
Alena Zindel ◽  
Kwang Seok Lee ◽  
Sara A. Rieke ◽  
...  

Burkitt lymphoma (BL) is an aggressive lymphoma type that is currently treated by intensive chemoimmunotherapy. Despite the favorable clinical outcome of the majority of BL patients, chemotherapy-related toxicity and disease relapse remain as major clinical challenges, emphasizing the need for innovative therapies. Using genome-scale CRISPR-Cas9 screens, we identified B-cell receptor (BCR) signaling, specific transcriptional regulators and one-carbon metabolism as vulnerabilities in BL. We focused on serine hydroxymethyltransferase 2 (SHMT2), a key enzyme in one-carbon metabolism. Inhibition of SHMT2 by either knockdown or pharmacological compounds induced anti-BL effects in vitro and in vivo. Mechanistically, SHMT2 inhibition led to a significant reduction of intracellular glycine and formate levels, which inhibited the mTOR pathway and thereby triggered autophagic degradation of the oncogenic transcription factor TCF3. As a consequence, this led to a collapse of tonic B-cell receptor signaling, which is controlled by TCF3 and is essential for BL cell survival. In terms of clinical translation, we furthermore identified drugs such as methotrexate that synergized with SHMT inhibitors (SHMT2i). Overall, our study has uncovered the dependency landscape in BL, identified and validated SHMT2 as a drug target and revealed a mechanistic link between SHMT2 and the transcriptional master regulator TCF3, opening up new perspectives for innovative therapies.

Blood ◽  
2004 ◽  
Vol 103 (12) ◽  
pp. 4389-4395 ◽  
Author(s):  
Freda K. Stevenson ◽  
Federico Caligaris-Cappio

Abstract The finding that chronic lymphocytic leukemia (CLL) consists of 2 clinical subsets, distinguished by the incidence of somatic mutations in the immunoglobulin (Ig) variable region (V) genes, has clearly linked prognosis to biology. Antigen encounter by the cell of origin is indicated in both subsets by selective but distinct expression of V genes, with evidence for continuing stimulation after transformation. The key to distinctive tumor behavior likely relates to the differential ability of the B-cell receptor (BCR) to respond. Both subsets may be undergoing low-level signaling in vivo, although analysis of blood cells limits knowledge of critical events in the tissue microenvironment. Analysis of signal competence in vitro reveals that unmutated CLL generally continues to respond, whereas mutated CLL is anergized. Differential responsiveness may reflect the increased ability of post-germinal center B cells to be triggered by antigen, leading to long-term anergy. This could minimize cell division in mutated CLL and account for prognostic differences. Unifying features of CLL include low responsiveness, expression of CD25, and production of immunosuppressive cytokines. These properties are reminiscent of regulatory T cells and suggest that the cell of origin of CLL might be a regulatory B cell. Continuing regulatory activity, mediated via autoantigen, could suppress Ig production and lead to disease-associated hypogammaglobulinemia. (Blood. 2004;103:4389-4395)


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 283-283
Author(s):  
Randall M Rossi ◽  
Valerie Grose ◽  
Polly Pine ◽  
Richard I Fisher ◽  
Craig T. Jordan ◽  
...  

Abstract Abstract 283 Certain malignant B-cells rely upon B-cell receptor-mediated survival signals. Spleen tyrosine kinase (Syk) initiates and amplifies the B-cell receptor-mediated signal. We and others have demonstrated that fostamatinib disodium (FosD: a prodrug of R406, a potent and specific inhibitor of Syk) induces apoptosis in lymphoma cell lines and primary tumors. A recent clinical trial has demonstrated significant clinical activity of FosD in relapsed/refractory B-cell non-Hodgkin lymphoma (NHL) and chronic lymphocytic leukemia, and minimal overlap in toxicities with conventional agents. Given this background, future development in B-cell NHL will include rational combinations of FosD and currently available therapies. Therefore, we conducted in vitro and in vivo studies of rational combinations including FosD, in anticipation of clinical trial development. First, using a human DLBCL cell line of GCB genotype, (OCI-Ly19), we analyzed in vitro the combination of R406 with the following agents: fludarabine, rapamycin, rituximab, bendamustine and bortezomib. Increased cytotoxicity was observed using in vitro culture assays with the addition of fludarabine, rapamycin, or rituximab to R406. Cell viability at 72 hours was 25% with R406 alone, 27% for fludarabine alone, and only 9% for the fludarabine/R406. At 48 hours, cell viability was 49% using R406 alone, 31% using rituximab alone, and 21% for rituximab/R406. At 120 hours using primary lymphoma cells (DLCL27), there were no viable cells treated with the rapamycin/FosD combination, compared with rapamycin alone (7%) or FosD alone (25%) The addition of bortezomib or bendamustine to FosD resulted in only a minimal additive increase in cytotoxicity. Results with all combinations were similar with the OCI-Ly10 human DLBCL line of ABC genotype. We then performed in vivo studies by subcutaneous transplantation of the DLBCL cell line OCI-Ly19, (engineered to express luciferase allowing for real time in vivo imaging) into immune deficient NOD/SCID mice which reproducibly formed tumors. Recipient animals were separated into uniform cohorts when the tumors were less than or equal to 500 mm3 in size. The animals were then simultaneously treated with FosD (n=7; 3 gm/kg ad. lib.; translates into 2-5 micromolar R406 systemically throughout the 24h period) and either bortezomib, (n=6; 0.4 mg/kg weekly IP), or rituximab, (n=13; 3 mg/kg, 2x weekly IP). Analysis of the OCI-Ly19 tumor volumes at day 46 showed a median of 2364 mm3 with bortezomib alone compared with 1823 mm3 with bortezomib and FosD. When FosD was combined with rituximab the most significant cytotoxicity was observed: (p=0.01; median tumor volume of 497 mm3 following the combination) in comparison to either FosD alone (3150 mm3) or rituximab alone (1764 mm3). We conclude that the addition of FosD appears to increase activity against NHL of several drugs, including fludarabine and rapamycin. These agents have significant activity in indolent and mantle cell NHL as well as CLL. Moreover, there is no evidence that FosD impedes rituximab responses in vitro or in vivo; in fact we have suggested possible synergy with the combination of rituximab and FosD. Based upon the documented single agent activity of FosD in humans, and this data, clinical trials are now indicated using these promising combinations in NHL and CLL. Disclosures: Pine: Rigel: Employment. Friedberg:Rigel: Research Funding.


2018 ◽  
Vol 51 (4) ◽  
pp. 1799-1814 ◽  
Author(s):  
Cong-cong Jia ◽  
Juan Du ◽  
Xia Liu ◽  
Rui Jiang ◽  
Yongye Huang ◽  
...  

Background/Aims: B-cell receptor-associated protein 31 (Bap31) is an evolutionarily conserved, ubiquitously expressed, polytopic integral membrane protein in the endoplasmic reticulum (ER) that is involved in the regulation of apoptosis, protein transport and degradation. Patients with Bap31 mutations exhibit symptoms similar to those exhibited by patients with central nervous system (CNS) diseases, such as deafness, dystonia, and intellectual disability. The present study aimed to investigate the function of Bap31 in CNS diseases by identifying a CNS disease-related gene regulated by Bap31 and exploring the underlying molecular mechanism. Methods: ShRNA-Bap31 and siRNA-Bap31 were used to knockdown Bap31 in N2a cells, and real-time PCR was performed to detect the mRNA levels of genes involved in CNS diseases. Western blot analyses were used to examine the protein levels of the candidate gene (valosin-containing protein, VCP) both in vivo and in vitro. The functions of Bap31 and VCP in mediating the degradation of the hyper-unstable mutant of cystic fibrosis trans-membrane conductance regulator (CFTRΔF508) were studied. Moreover, real-time PCR, Western blot and dual luciferase reporter analyses were conducted to investigate the molecular mechanism by which Bap31 regulates the expression levels of VCP. Results: VCP was identified as a candidate gene based on its differential expression in N2a cells following both shRNA- and siRNA-mediated knockdown of Bap31. Both the mRNA and protein levels of VCP were regulated by Bap31 in vivo and in vitro. In the ER-associated degradation (ERAD) pathway, Bap31 also regulated VCP expression and caused differences in the binding quantities of CFTRΔF508 and VCP. Furthermore, a transcription factor of VCP (E74-like factor 2, Elf2) was regulated by Bap31, and Elf2 mediated the changes in VCP transcription and expression in cells with altered Bap31 expression. Conclusion: These results indicate that Bap31 regulates the expression of VCP possibly via Elf2 and support the potential molecular function of Bap31 in CNS diseases.


2004 ◽  
Vol 199 (6) ◽  
pp. 855-865 ◽  
Author(s):  
Amy Reichlin ◽  
Anna Gazumyan ◽  
Hitoshi Nagaoka ◽  
Kathrin H. Kirsch ◽  
Manfred Kraus ◽  
...  

B cell receptor (BCR) signaling is mediated through immunoglobulin (Ig)α and Igβ a membrane-bound heterodimer. Igα and Igβ are redundant in their ability to support early B cell development, but their roles in mature B cells have not been defined. To examine the function of Igα–Igβ in mature B cells in vivo we exchanged the cytoplasmic domain of Igα for the cytoplasmic domain of Igβ by gene targeting (Igβc→αc mice). Igβc→αc B cells had lower levels of surface IgM and higher levels of BCR internalization than wild-type B cells. The mutant B cells were able to complete all stages of development and were long lived, but failed to differentiate into B1a cells. In addition, Igβc→αc B cells showed decreased proliferative and Ca2+ responses to BCR stimulation in vitro, and were anergic to T-independent and -dependent antigens in vivo.


Haematologica ◽  
2017 ◽  
Vol 103 (3) ◽  
pp. 497-505 ◽  
Author(s):  
Eve M. Coulter ◽  
Andrea Pepper ◽  
Silvia Mele ◽  
Najeem’deen Folarin ◽  
William Townsend ◽  
...  

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 837-837
Author(s):  
Lorena Fontan ◽  
Rebecca Goldstein ◽  
Gabriella Casalena ◽  
Himaly Shinglot ◽  
Ilkay Us ◽  
...  

Abstract Recent studies have identified small molecule inhibitors of the paracaspase activity of MALT1, a protease and scaffolding protein involved in the B-cell receptor (BCR) signaling pathway, that are effective killing lymphomas in vitro and in vivo in xenograft models of Activated B-cell like Diffuse Large B-cell Lymphoma (ABC-DLBCL). ABC-DLBCL is characterized by constitutive NF-κB activity. This activation has been attributed to mutations in various protein components of the B-cell receptor (BCR) as well as Toll-like receptor (TLR) pathways. However, not all ABC-DLBCL cell lines and primary patient samples were equally sensitive to MALT1 inhibitors in vitro. In order to discover genetic modifiers of response to MALT1 inhibition we used an shRNA library screening approach. MALT1 inhibition sensitive cell line HBL-1 was infected with DECIPHER barcoded shRNA library Module 1 and cells were treated with vehicle or 300 nM of MALT1 inhibitor MI-2 for 22 days. At this time cells were harvested and genomic DNA extracted. PCR was used to amplify barcodes and gel purified bands were extracted and sequenced. Cellecta's Deconvoluter software was used to quantify the number of reads per shRNA, reads were normalized to total number of reads and fold change between vehicle and MI-2 treated cells was calculated. Among the top positively and negatively enriched hairpins, we found a significant number of genes involved in the BCR pathway including: positively regulated shRNAs against TNFAIP3 and FOXO1 and negatively regulated hairpins against BTK, CD79B and PI3K genes PIK3C2A and PIK3C2D. Interestingly, TNFAIP3 and FOXO1 are negative regulators of the BCR pathway while BTK, CD79B and PI3K genes are positive regulators of this pathway. In order to validate these results and given the abundance of inhibitors of different proteins in the BCR pathway, we run a focused combination screen using MALT1 inhibitor MI-2 and inhibitors against other proteins in the pathway in 4 MALT1 sensitive cell lines. Combinations with PI3K inhibitors were most synergistic (combination index (CI) ranging 0.12-0.67), while BTK and PKC inhibitors showed an additive effect (CI ranging 0.7-0.9). These results were confirmed using a second MALT1 inhibitor, mepazine. In order to characterize the molecular mechanism by which MALT1 inhibition cooperates with PI3K, we focused on the FDA approved drug Idelalisib. In vitro treatment of cells with MI-2 and Idelalisib showed that effect on cell growth was a combination of decreased proliferation and increased apoptosis. Moreover, we found a decrease in AKT phosphorylation followed by a decrease in FOXO1 T24 phosphorylation and an accumulation of FOXO1 protein. This result correlates with our finding that FOXO1 knockdown favors MALT1 inhibition resistance. In vivo treatment of TMD8 xenografts with a combination of MI-2 and Idelalisib showed a stronger effect than either drug used as a single agent or vehicle, confirming the increased efficacy of the combination over either drug alone. In summary, we have used an shRNA library screening in order to determine which proteins and pathways cooperate with MALT1 inhibition to kill ABC-DLBCL and to evaluate combinatorial treatments in an unbiased manner. This same approach has pointed out TNFAIP3 and FOXO1 as possible biomarkers of response. This is especially interesting since these two proteins are mutated in a proportion of ABC-DLBCL patients and could affect response to treatment not only against MALT1 inhibitors but potentially any BCR targeted therapy. Disclosures Melnick: Janssen: Research Funding.


Blood ◽  
2007 ◽  
Vol 110 (2) ◽  
pp. 616-623 ◽  
Author(s):  
Andrew G. Polson ◽  
Shang-Fan Yu ◽  
Kristi Elkins ◽  
Bing Zheng ◽  
Suzanna Clark ◽  
...  

Abstract Targeting cytotoxic drugs to cancer cells using antibody–drug conjugates (ADCs), particularly those with stable linkers between the drug and the antibody, could be an effective cancer treatment with low toxicity. However, for stable-linker ADCs to be effective, they must be internalized and degraded, limiting potential targets to surface antigens that are trafficked to lysosomes. CD79a and CD79b comprise the hetrodimeric signaling component of the B-cell receptor, and are attractive targets for the use of ADCs because they are B-cell–specific, expressed in non-Hodgkin lymphomas (NHL), and are trafficked to a lysosomal-like compartment as part of antigen presentation. We show here that the stable-linker ADCs anti-CD79b-MCC-DM1 and anti-CD79b-MC-MMAF are capable of target-dependent killing of nonHodgkin lymphoma cell lines in vitro. Further, these 2 ADCs are equally effective as low doses in xenograft models of follicular, mantle cell, and Burkitt lymphomas, even though several of these cell lines express relatively low levels of CD79b in vivo. In addition, we demonstrate that anti-CD79b ADCs were more effective than anti-CD79a ADCs and that, as hypothesized, anti-CD79b antibodies downregulated surface B-cell receptor and were trafficked to the lysosomal-like major histocompatibility complex class II–positive compartment MIIC. These results suggest that anti-CD79b-MCC-DM1 and anti-CD79b-MC-MMAF are promising therapeutics for the treatment of NHL.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 186-186
Author(s):  
Julia Hoellenriegel ◽  
Susan O'Brien ◽  
Michael J. Keating ◽  
William G. Wierda ◽  
Joseph J. Buggy ◽  
...  

Abstract Abstract 186 B cell receptor (BCR) signaling is essential for normal B cell development and plays an important role in several B cell malignancies, including chronic lymphocytic leukemia (CLL). BrutonÕs tyrosine kinase (Btk) transmits B cell receptor (BCR) signaling and can be inhibited by ibrutinib, a selective, covalent Btk inhibitor. Because of highly encouraging results with ibrutinib in high-risk CLL patients in the Phase 1/2 trial, we explored the combination of ibrutinib and rituximab in forty high-risk CLL patients, characterized by the presence of 17p deletion or TP53 mutation (treated or untreated), previously treated patients with 11q deletion, or patients with a short remission duration (< 3 years) after first-line chemo-immunotherapy. Here, we present early correlative studies from this trial, focusing on BCR-related CLL responses (chemokine secretion, viability) and CLL cell migration, based on our recent experience with ibrutinib in preclinical CLL models (Ponader S et al., Blood 119:1182–9, 2012). The aim of this study was to determine if preclinical results of Btk inhibition with ibrutinib can be recapitulated in vivo with specimen from the high-risk population enrolled on this trial. Plasma levels of CLL3 and CCL4 (MIP-1α/β), two chemokines secreted by CLL cells in response to BCR activation, were assessed before, at 14, and at 28 days on treatment with ibrutinib. In 28 analyzed patients, we demonstrate robust, significant reductions in CCL3 and CCL4 plasma concentrations after 14 and 28 days of treatment. As shown in Figure 1, plasma CCL3 levels were reduced from 139.6 (± 40.4) pg/mL before treatment to 6.9 (± 0.9) pg/mL or 6.5 (± 0.7) pg/mL after 14 and 28 days of treatment, respectively. We also evaluated in vitro secretion of CCL3 and CCL4 into supernatants of CLL cells isolated from 12 patients before and during ibrutinib therapy in response to stimulation with anti-IgM. Compared to CLL cells from pre-treatment specimen, CLL cells from patients on Ibrutinib therapy showed reduced levels of CLL3 and CCL4 secretion, and additional treatment with Ibrutinib (0.5 μM – 1μM) led to reduced chemokine levels only in pre-treatment samples, indicating complete Btk target inhibition. We next evaluated the effect of ibrutinib on CLL cell viability after anti-IgM stimulation. In pre-treatment samples, ibrutinib abrogated BCR-triggered CLL cell survival. Surprisingly, CLL cells from ibrutinib-treated patients remained anti-IgM responsive in these viability assays. These Btk-independent pro-survival effects could not be inhibited by in vitro treatment with ibrutinib, indicating that some of the anti-IgM-triggered pro-survival signaling can bypass Btk. Next, we analyzed migration of CLL cells towards the chemokines CXCL12 and CXCL13 in transwell chemotaxis assays. Pre-treatment samples displayed significant higher chemotaxis towards CXCL12 and CXCL13 when compared to CLL samples from patients on therapy with ibrutinib. The mean relative migration of such samples toward CXCL12 or CXCL13 was reduced to 28% (± 5%) or 35% (±15%) of respective CLL cells isolated before ibrutinib therapy (100%), n=6. Collectively, our results demonstrate that Ibrutinib blocks BCR-dependent survival and migration responses in high-risk CLL patients in vivo. They also corroborate the validity and robustness of CCL3 and CCL4 as biomarkers for BCR inhibition in CLL patients. Figure 1 Figure 1. Disclosures: O'Brien: Pharmacyclics: Research support Other. Buggy:Pharmacyclics: Employment, Equity Ownership. Burger:Pharmacyclics: Consultancy, Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 488-488
Author(s):  
Anuradha Tarafdar ◽  
Ashfia Fatima Khan ◽  
Emilio Cosimo ◽  
Hothri A. Moka ◽  
Karen Dunn ◽  
...  

Abstract B cell receptor (BCR)-mediated signals orchestrate key events during the life cycle of B lymphocytes enabling normal B cell development and maturation. Chronic lymphocytic leukaemia (CLL), an incurable malignancy of mature B cells, displays deregulated BCR-mediated signalling, the intensity of which correlates disease pathogenesis. As such, signals generated upon BCR engagement represent promising targets for novel therapies. Of note, the expression profile of selected protein kinase C (PKC) isoforms, which link proximal BCR mediated signals with downstream pathways, exhibit altered expression patterns in CLL cells: upregulation of PKCβII, PKCε, PKCζ and downregulation of PKCα and PKCβI compared with normal B cells. We previously demonstrated that introduction of a kinase inactive PKCα (PKCα-KR) construct in mouse lymphoid progenitor cells resulted in development of a CLL-like disease both in vitro and in vivo. This model resembles the more aggressive subset of CLL, exhibiting an upregulation of ZAP-70 and elevated ERK-MAPK-mTOR signalling resulting in enhanced proliferation and increased tumor load in the lymphoid organs. Interestingly, reduced PKCα function resulted in PKCβII upregulation, a key pathogenic feature of CLL. Inhibition of PKCβII in these cells with enzastaurin resulted in cell cycle arrest in vitro, reduced tumour load and elevated apoptosis in vivo indicating that PKCβII plays a vital role in maintaining cell survival in our model. To further elucidate the role of PKCβ in leukaemogenesis, we have performed sequential prkcb knockdown (KD) and PKCα-KR expression in the lymphoid progenitor cells. prkcb KD resulted in reduced proliferation and survival concurrent with reduced expression of leukaemic markers (CD23 and CD5) compared to control cells indicating that prkcb plays an essential role in initiation of leukaemogenesis in our model. To identify targets responsible for the regulation for prkcb transcription we performed global gene analysis (Affymetrix GeneChip mouse gene 1.0 ST) comparing MIEV (empty vector control) and PKCα-KR transduced cells at successive time-points mapping critical stages of B-cell transformation, pre- and post PKCβII upregulation. MetaCoreTM analysis revealed that upon upregulation of PKCβII, the BCR-mediated signalling pathway was significantly upregulated in PKCα-KR expressing cells. At the protein level, key hubs proximal to the BCR - Lyn, Btk and Akt - were upregulated, indicating constitutive activation of BCR signalling in the CLL-like PKCα-KR expressing cells. Additionally, proliferative signals downstream of the BCR (mTOR, NF-kB and c-myc) were also upregulated. Treatment of PKCα-KR expressing cells with the Btk inhibitor Ibrutinib (PCI-32765), which has recently been approved for the treatment of CLL, reduced cellular proliferation and inhibited phosphorylation of BtkY223, AktS473 and S6S235/236. Overall, we demonstrate that PKCβII expression is essential for leukaemogenesis and identify key signalling pathways that drive the initiation/development of CLL in the PKCα-KR model. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Author(s):  
Supriya Chakraborty ◽  
Claudio Martines ◽  
Fabiola Porro ◽  
Ilaria Fortunati ◽  
Alice Bonato ◽  
...  

B cell receptor (BCR) signals play a critical role in the pathogenesis of chronic lymphocytic leukemia (CLL), but their role in regulating CLL cell proliferation has still not been firmly established. Unlike normal B cells, CLL cells do not proliferate in vitro upon engagement of the BCR, suggesting that CLL cell proliferation is regulated by other signals from the microenvironment, such as those provided by Toll-like receptors or T cells. Here, we report that BCR engagement of human and murine CLL cells induces several positive regulators of the cell cycle, but simultaneously induces the negative regulators CDKN1A, CDKN2A and CDKN2B, which block cell cycle progression. We further show that introduction of genetic lesions that downregulate these cell cycle inhibitors, such as inactivating lesions in CDKN2A, CDKN2B and the CDKN1A regulator TP53, leads to more aggressive disease in a murine in vivo CLL model and spontaneous proliferation in vitro that is BCR-dependent but independent of costimulatory signals. Importantly, inactivating lesions in CDKN2A, CDKN2B and TP53 frequently co-occur in Richter syndrome, and BCR stimulation of human Richter syndrome cells with such lesions is sufficient to induce proliferation. We also show that tumor cells with combined TP53 and CDKN2A/2B abnormalities remain sensitive to BCR inhibitor treatment and are synergistically sensitive to the combination of a BCR and CDK4/6 inhibitor both in vitro and in vivo. These data provide evidence that BCR signals are directly involved in driving CLL cell proliferation and reveal a novel mechanism of Richter transformation.


Sign in / Sign up

Export Citation Format

Share Document