Oncogenic Transcription Factor Evi1 Regulates Hematopoietic Stem Cell Proliferation through GATA-2 Expression.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 228-228 ◽  
Author(s):  
Hiromi Yuasa ◽  
Yuichi Oike ◽  
Atsushi Iwama ◽  
Daisuke Sugiyama ◽  
Ichiro Nishikata ◽  
...  

Abstract Chromosomal abnormalities, such as translocation, mutation or deletion, are central to the pathogenesis of human cancers. Recently, several transcription factors have been isolated as genes responsible for leukemia from the region surrounding chromosomal breakpoints, which are implicated in the regulation of normal hematopoiesis. Among on them, ecotropic viral integration site-1 (Evi1) is a transcription factor activated by retroviral integration in murine leukemias and chromosomal rearrangements in human leukemias. Evi1 is a zinc finger transcription factor and contains two separated DNA-binding domains. It was reported that Evi1−/− embryos die at approximately E10.5, exhibiting widespread hypocellularity and hemorrhaging. However, the role in normal hematopoiesis or authentic target genes of Evi1 has not been elucidated. Here, we show that Evi1 is predominantly expressed in hematopoietic stem cells (HSCs) in embryos and adult bone marrows, and Evi1−/− embryos are markedly decreased in numbers of HSC. One embryo-equivalent cells from E9.5 P-Sp of Evi1+/+, Evi1+/− and Evi1−/− embryos (Ly5.2) were transplanted into a busulfan-conditioned newborn recipient (Ly5.1). At 2 months posttransplant, donor-derived Ly5.2(+) cells could be detected in the peripheral blood of the recipients that received P-Sp cells from the Evi1+/+ and Evi1+/− but not from the Evi1−/− embryos. Thus, Evi1 is critical for the generation of HSCs in the P-Sp. Both Evi1−/− embryos and yolk sac showed marked retardation in the organization of the vascular system, particularly in vascular remodeling, compared with controls. Using an in vitro P-Sp culture analysis, we found normal in vitro differentiation of endothelial cells in Evi1−/− P-Sp cultures but defects in their in vitro network formation, which is normally promoted by Ang-1 secreted from developing HSCs in P-Sp cultures. HSCs from adult bone marrow or HSCs from E9.5 wild type embryos rescued defective angiogenesis in Evi1−/− embryos. The fine vascular network coincided with the region where HSCs formed a colony. Their round morphology confirmed that exogenous adult HSCs did not differentiate into elongated endothelial cells. We showed that recombinant Ang-1 alone restored the defective angiogenesis in Evi1−/− embryos to a wild type level. It is suggested that the defect in hematopoietic cells induced defective angiogenesis in Evi1−/− embryos mediated by Ang-1. Notably, mRNA expression of GATA-2, which is essential for proliferation of definitive HSCs, was profoundly reduced in Evi1−/− embryos. Analysis of the GATA-2 promotor revealed that Evi1 directly binds to the 5′ upstream region of the GATA−2 exon and positively regulates its promoter activity in vitro and in vivo. Restoration of GATA-2 expression dramatically rescued the defective expansion of Evi1−/− embryos HSCs in vitro. Our results reveal that GATA-2 is a critical in vivo target for Evi1 and indicate hierarchical regulation of the HSC pool by transcriptional regulators.

Blood ◽  
2010 ◽  
Vol 116 (6) ◽  
pp. 909-914 ◽  
Author(s):  
Enid Yi Ni Lam ◽  
Christopher J. Hall ◽  
Philip S. Crosier ◽  
Kathryn E. Crosier ◽  
Maria Vega Flores

Abstract Blood cells of an adult vertebrate are continuously generated by hematopoietic stem cells (HSCs) that originate during embryonic life within the aorta-gonad-mesonephros region. There is now compelling in vivo evidence that HSCs are generated from aortic endothelial cells and that this process is critically regulated by the transcription factor Runx1. By time-lapse microscopy of Runx1-enhanced green fluorescent protein transgenic zebrafish embryos, we were able to capture a subset of cells within the ventral endothelium of the dorsal aorta, as they acquire hemogenic properties and directly emerge as presumptive HSCs. These nascent hematopoietic cells assume a rounded morphology, transiently occupy the subaortic space, and eventually enter the circulation via the caudal vein. Cell tracing showed that these cells subsequently populated the sites of definitive hematopoiesis (thymus and kidney), consistent with an HSC identity. HSC numbers depended on activity of the transcription factor Runx1, on blood flow, and on proper development of the dorsal aorta (features in common with mammals). This study captures the earliest events of the transition of endothelial cells to a hemogenic endothelium and demonstrates that embryonic hematopoietic progenitors directly differentiate from endothelial cells within a living organism.


2018 ◽  
Vol 215 (9) ◽  
pp. 2265-2278 ◽  
Author(s):  
Colleen M. Lau ◽  
Ioanna Tiniakou ◽  
Oriana A. Perez ◽  
Margaret E. Kirkling ◽  
George S. Yap ◽  
...  

An IRF8-dependent subset of conventional dendritic cells (cDCs), termed cDC1, effectively cross-primes CD8+ T cells and facilitates tumor-specific T cell responses. Etv6 is an ETS family transcription factor that controls hematopoietic stem and progenitor cell (HSPC) function and thrombopoiesis. We report that like HSPCs, cDCs express Etv6, but not its antagonist, ETS1, whereas interferon-producing plasmacytoid dendritic cells (pDCs) express both factors. Deletion of Etv6 in the bone marrow impaired the generation of cDC1-like cells in vitro and abolished the expression of signature marker CD8α on cDC1 in vivo. Moreover, Etv6-deficient primary cDC1 showed a partial reduction of cDC-specific and cDC1-specific gene expression and chromatin signatures and an aberrant up-regulation of pDC-specific signatures. Accordingly, DC-specific Etv6 deletion impaired CD8+ T cell cross-priming and the generation of tumor antigen–specific CD8+ T cells. Thus, Etv6 optimizes the resolution of cDC1 and pDC expression programs and the functional fitness of cDC1, thereby facilitating T cell cross-priming and tumor-specific responses.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Bin Ren ◽  
Arpita Mukhopadhyay* ◽  
Anthony A Lanahan ◽  
Zhen W Zhuang ◽  
Karen L Moodie ◽  
...  

Background : Arterial morphogenesis is an important and poorly understood process. We have previously demonstrated that disruption of synectin gene expression in mice and zebrafish results in impaired arterial development and branching morphogenesis. Synectin null endothelial cells demonstrate reduced VEGF responsiveness in terms of migration, proliferation and differentiation and ERK-1/2 activation (Chittenden et al, Dev Cell 2006). Since ERK has been established as major participants in the regulation of cell growth and differentiation and Erk activation has been previously linked to arterial morphogenesis, we evaluated whether activation of Erk signaling in synectin disrupted mice and zebrafish as well as synectin KO arterial endothelial cells (ECs) would restore defective migration, arterial differentiation, angiogenesis and arteriogenesis. To stimulate ERK signaling we used partial inhibition of PI3-K activity to reduce Akt-dependent suppression of Raf1 activation or introduction of constitutively active ERK construct. Methods : In vitro studies were conducted with primary arterial ECs isolated from synectin wild type (WT) and knock out (KO) mice. In vivo studies were carried out in WT and synectin deficient mice and synectin knockdown zebrafish embryos. Results: Exposure of synectin −/− arterial EC to two selective PI3K inhibitors GS4898 or LY294002 in vitro restored ERK activation in a dose-dependent manner and returned cell migration and in vitro branching morphogenesis to wild type levels. Transduction of a constitutively active ERK construct in vitro or in a Matrigel model in vivo had similar effect. Systemic treatment of synectin −/− mice with GS4898 fully restored impaired angiogenesis and arterial morphogenesis in adult animals in the setting of hindlimb ischemia. Similar treatment nearly completely restored arterial development defects in zebrafish treated with a synectin morpholino. Conclusions: ERK activation plays a key role in arteriogenesis both in adult tissues and during embryonic development. Activation of compromised ERK-1/2 signaling may be a novel therapeutic intervention to stimulate arteriogenesis.


Blood ◽  
2021 ◽  
Author(s):  
Kaushik Das ◽  
Shiva Keshava ◽  
Shabbir A Ansari ◽  
Vijay Kumar Reddy Kondreddy ◽  
Charles Esmon ◽  
...  

Recombinant FVIIa (rFVIIa) is used as a hemostatic agent to treat bleeding disorders in hemophilia patients with inhibitors and other groups of patients. Our recent studies showed that FVIIa binds endothelial cell protein C receptor (EPCR) and induces protease-activated receptor 1 (PAR1)-mediated biased signaling. The importance of FVIIa-EPCR-PAR1-mediated signaling in hemostasis is unknown. In the present study, we show that FVIIa induces the release of extracellular vesicles (EVs) from endothelial cells both in vitro and in vivo. Silencing of EPCR or PAR1 in endothelial cells blocked the FVIIa-induced generation of EVs. Consistent with these data, FVIIa treatment enhanced the release of EVs from murine brain endothelial cells isolated from wild-type, EPCR overexpressors, and PAR1-R46Q mutant mice, but not EPCR-deficient or PAR1-R41Q mutant mice. In vivo studies revealed that administration of FVIIa to wild-type, EPCR overexpressors, and PAR1-R46Q mutant mice, but not EPCR-deficient or PAR1-R41Q mutant mice, increase the number of circulating EVs. EVs released in response to FVIIa treatment exhibit enhanced procoagulant activity. Infusion of FVIIa-generated EVs and not control EVs to platelet-depleted mice increased thrombin generation at the site of injury and reduced blood loss. Administration of FVIIa-generated EVs or generation of EVs endogenously by administering FVIIa augmented the hemostatic effect of FVIIa. Overall, our data reveal that FVIIa treatment, through FVIIa-EPCR-PAR1 signaling, releases EVs from the endothelium into the circulation, and these EVs contribute to the hemostatic effect of FVIIa.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Hyun Sook Hong ◽  
Suna Kim ◽  
Youngsook Son

Bone marrow stem cells, especially, endothelial precursor cells (EPC), mesenchymal stem cells (MSC) or hematopoietic stem cell (HSC) are expected as reparative cells for the repair of a variety of tissue damages such as stroke and myocardial infarction, even though their role in the repair is not demonstrated. This report was investigated to find a role of Substance-p (SP) as a reparative agent in the tissue repair requiring EPC and MSC. In order to examine EPC (EPC SP ) and MSC (MSC SP ) mobilized by SP, we injected SP intravenously for consecutive 2 days and saline was injected as a vehicle. At 3 post injection, peripheral blood (PB) was collected.To get mesenchymal stem cells or endothelial progenitor cells, MNCs were incubated in MSCGM or EGM-2 respectively for 10 days. Functional characteristics of the EPC SP were proven by the capacity to form endothelial tubule network in the matrigel in vitro and in the matrigel plug assay in vivo. In contrast, MSC SP did not form a tube-like structure but formed a pellet-structure on matrigel. However, when both cells were premixed before the matrigel assay, much longer and branched tubular network was formed, in which a-SMA expressing MSC SP were decorating outside of the endothelial tube, especially enriched at the bifurcating point. MSC SP may contribute and reinforce elaborate vascular network formation in vivo by working as pericyte-like cells. Thus, the EPC SP and MSC SP were labeled with PKH green and PKH red respectively and their tubular network was examined. Well organized tubular network was formed, which was covered by PKH green labeled cells and was decorated in a punctate pattern by PKH red labeled cells. In order to investigate the role of EPC SP and MSC SP specifically in vivo, rabbit EPC SP and MSC SP were transplanted to full thickness skin wound. The vessel of EPC SP -transplanted groups was UEA-lectin+, which was not covered with a-SMA+ pericytes but EPC SP + MSC SP -transplanted groups showed, in part, a-SMA+ pericyte-encircled UEA-lectin+ vessels. This proved the specific role of MSC SP as pericytes. From these data, we have postulated that the collaboration of MSC and EPC is essential for normal vessel structure and furthermore, accelerated wound healing as ischemia diseases, which can be stimulated through by SP injection.


Blood ◽  
1999 ◽  
Vol 94 (9) ◽  
pp. 3037-3047 ◽  
Author(s):  
Jack Levin ◽  
Jin-Peng Peng ◽  
Georgiann R. Baker ◽  
Jean-Luc Villeval ◽  
Patrick Lecine ◽  
...  

Abstract Expression of the p45 subunit of transcription factor NF-E2 is restricted to selected blood cell lineages, including megakaryocytes and developing erythrocytes. Mice lacking p45 NF-E2 show profound thrombocytopenia, resulting from a late arrest in megakaryocyte differentiation, and a number of red blood cell defects, including anisocytosis and hypochromia. Here we report results of studies aimed to explore the pathophysiology of these abnormalities. Mice lacking NF-E2 produce very few platelet-like particles that display highly disorganized ultrastructure and respond poorly to platelet agonists, features consistent with the usually lethal hemorrhage in these animals. Thrombocytopenia was evident during fetal life and was not corrected by splenectomy in adults. Surprisingly, fetal NF-E2–deficient megakaryocyte progenitors showed reduced proliferation potential in vitro. Thus, NF-E2 is required for regulated megakaryocyte growth as well as for differentiation into platelets. All the erythroid abnormalities were reproduced in lethally irradiated wild-type recipients of hematopoietic cells derived from NF-E2-null fetuses. Whole blood from mice lacking p45 NF-E2 showed numerous small red blood cell fragments; however, survival of intact erythrocytes in vivo was indistinguishable from control mice. Considered together, these observations indicate a requirement for NF-E2 in generating normal erythrocytes. Despite impressive splenomegaly at baseline, mice lacking p45 NF-E2 survived splenectomy, which resulted in increased reticulocyte numbers. This reveals considerable erythroid reserve within extra-splenic sites of hematopoiesis and suggests a role for the spleen in clearing abnormal erythrocytes. Our findings address distinct aspects of the requirements for NF-E2 in blood cell homeostasis and establish its roles in proper differentiation of megakaryocytes and erythrocytes.


1998 ◽  
Vol 330 (3) ◽  
pp. 1469-1474 ◽  
Author(s):  
Yaxu WU ◽  
Johannes RUEF ◽  
N. Gadiparthi RAO ◽  
Cam PATTERSON ◽  
S. Marschall RUNGE

The mitogenic effects of thrombin are mediated by a G-protein-coupled receptor. Because the effects of thrombin are strongly influenced by the expression of its receptor, an understanding of its regulatory mechanisms is essential. To identify mechanisms of human thrombin receptor (HTR) gene regulation, a series of HTR-promoter-luciferase constructs were made and transfected into human microvascular endothelial cells for analysis. Deletion from bp -303 to -164 abolished reporter gene expression. Dimethyl sulphate treatment in vivo and DNase I footprinting in vitro demonstrated that a cluster of three GC box consensus sites was occupied, and electrophoretic mobility-shift assays established that Sp1 and Sp3 both bind to this 3ʹ GC box cluster. We mutated each of the three GC boxes individually and all three collectively within this 3ʹ cluster. Basal promoter activity was decreased to 46%, 78% and 29% of control for each of the GC boxes mutated individually, and to 6% when the three were mutated collectively. To test the individual abilities of Sp1 and Sp3 to activate or repress HTR transcription, we conducted co-transfection experiments with wild-type or mutated HTR-promoter-luciferase constructs. Co-transfection with Sp1 significantly augmented wild-type HTR promoter activity. Sp3 alone did not affect activity, and inhibited Sp1-mediated activation. Competition for shared binding sites by Sp1 and Sp3 might differentially regulate HTR expression in vascular endothelial cells.


Blood ◽  
2001 ◽  
Vol 97 (6) ◽  
pp. 1671-1678 ◽  
Author(s):  
Yoshihiro Yamada ◽  
Nobuyuki Takakura ◽  
Hirofumi Yasue ◽  
Hisao Ogawa ◽  
Hajime Fujisawa ◽  
...  

Neuropilin 1 (NP-1) is a receptor for vascular endothelial growth factor (VEGF) 165 (VEGF165) and acts as a coreceptor that enhances VEGF165 function through tyrosine kinase VEGF receptor 2 (VEGFR-2). Transgenic overexpression of np-1results in an excess of capillaries and blood vessels and a malformed heart. Thus, NP-1 may have a key role in vascular development. However, how NP-1 regulates vascular development is not well understood. This study demonstrates how NP-1 can regulate vasculogenesis and angiogenesis in vitro and in vivo. In homozygous np-1mutant (np-1−/−) murine embryos, vascular sprouting was impaired in the central nervous system and pericardium. Para-aortic splanchnopleural mesoderm (P-Sp) explants fromnp-1−/− mice also had vascular defects in vitro. A monomer of soluble NP-1 (NP-1 tagged with Flag epitope) inhibited vascular development in cultured wild-type P-Sp explants by sequestering VEGF165. In contrast, a dimer of soluble NP-1 (NP-1 fused with the Fc part of human IgG) enhanced vascular development in cultured wild-type P-Sp explants. Moreover, the NP-1–Fc rescued the defective vascular development in culturednp-1−/− P-Sp explants. A low dose of VEGF alone did not promote phosphorylation of VEGFR-2 on endothelial cells from np-1−/− embryos, but simultaneous addition of a low dose of VEGF and NP-1–Fc phosphorylated VEGFR-2 significantly. Moreover, NP-1–Fc rescued the defective vascularity of np-1−/− embryos in vivo. These results suggest that a dimer form of soluble NP-1 delivers VEGF165 to VEGFR-2–positive endothelial cells and promotes angiogenesis.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 32-32
Author(s):  
Lei Wang ◽  
Linda Yang ◽  
Marie–Dominique Filippi ◽  
David A. Williams ◽  
Yi Zheng

Abstract The Rho family GTPase Cdc42 has emerged as a key signal transducer in cell regulation. To investigate its physiologic function in hematopoiesis, we have generated mice carrying a gene targeted null allele of cdc42gap, a major negative regulatory gene of Cdc42 and mice with conditional targeted cdc42 allele (cdc42flox/flox). Deletion of the respective gene products in mice was confirmed by PCR genotyping and Western blotting. Low-density fetal liver or bone marrow cells from Cdc42GAP−/− mice displayed ~3 fold elevated Cdc42 activity and normal RhoA, Rac1 or Rac2 activity, indicating that cdc42gap deletion has a specific effect on Cdc42 activity. The Cdc42GAP-deficient hematopoietic stem/progenitor cells (HSC/Ps, Lin−c-Kit+) generated from Cdc42GAP−/− E14.5 fetal liver and the Cdc42−/− HSC/Ps derived by in vitro expression of Cre via a retrovirus vector from Cdc42flox/flox low density bone marrow showed a growth defect in liquid culture that was associated with increased apoptosis but normal cell cycle progression. Cdc42GAP-deficient HSC/Ps displayed impaired cortical F-actin assembly with extended actin protrusions upon exposure to SDF–1 in vitro and a punctuated actin structure after SCF stimulation while Cdc42−/− but not wild type HSC/Ps responded to SDF-1 in inducing membrane protrusions. Both Cdc42−/− and Cdc42GAP−/− HSC/Ps were markedly decreased in adhesion to fibronectin. Moreover, both Cdc42−/− and Cdc42GAP−/− HSC/Ps showed impaired migration in response to SDF-1. These results demonstrate that Cdc42 regulation is essential for multiple HSC/P functions. To understand the in vivo hematopoietic function of Cdc42, we have characterized the Cdc42GAP−/− mice further. The embryos and newborns of homozygous showed a ~30% reduction in hematopoietic organ (i.e. liver, bone marrow, thymus and spleen) cellularity, consistent with the reduced sizes of the animals. This was attributed to the increased spontaneous apoptosis associated with elevated Cdc42/JNK/Bid activities but not to a proliferative defect as revealed by in vivo TUNEL and BrdU incorporation assays. ~80% of Cdc42GAP−/− mice died one week after birth, and the surviving pups attained adulthood but were anemic. Whereas Cdc42GAP−/− mice contained small reduction in the frequency of HSC markers and normal CFU-G, CFU-M, and CFU-GM activities, the frequency of BFU-E and CFU-E were significantly reduced. These results suggest an important role of Cdc42 in erythropoiesis in vivo. Taken together, we propose that Cdc42 is essential for multiple HSC/P functions including survival, actin cytoskeleton regulation, adhesion and migration, and that deregulation of its activity can have a significant impact on erythropoiesis. Cdc42 regulates HSC/P functions and erythropoiesis Genotype/phenotype Apoptosis increase Adhesion decrease Migration decrease F-actin assembly HSC frequency decrease BFU-E, CFU-E decrease The numbers were indicated as fold difference compared with wild type. ND:not determined yet. Cdc42GAP−/− 2.43, p<0.005 0.97, p<0.01 1.01, p<0.01 protrusion (SDF-1); punctruated (SCF) 0.34, p<0.05 0.92, p<0.01; 0.38, p<0 Cdc42−/− 3.68, p<0.005 0.98, p<0.001 3.85, p<0.005 protrusion (SDF-1) ND ND


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 776-776
Author(s):  
Zhongfa Yang ◽  
Alan G. Rosmarin

Abstract GABP is an ets transcription factor that regulates transcription of key myeloid genes, including CD18 (beta2 leukocyte integrin), neutrophil elastase, lysozyme, and other key mediators of the inflammatory response; it is also known to regulate important cell cycle control genes. GABP consists of two distinct and unrelated proteins that, together, form a functional transcription factor complex. GABPalpha (GABPa) is an ets protein that binds to DNA; it forms a tetrameric complex by recruiting its partner, GABPbeta (GABPb), which contains the transactivation domain. GABPa is a single copy gene in both the human and murine genomes and it is the only protein that can recruit GABPb to DNA. We cloned GABPa from a murine genomic BAC library and prepared a targeting vector in which exon 9 (which encodes the GABPa ets domain) was flanked by loxP (floxed) recombination sites. The targeting construct was electroporated into embryonic stem cells, homologous recombinants were implanted into pseudopregnant mice, heterozygous floxed GABPa mice were identified, and intercrossing yielded expected Mendelian ratios of wild type, heterozygous, and homozygous floxed GABPa mice. Breeding of heterozygous floxed GABPa mice to CMV-Cre mice (which express Cre recombinase in all tissues) yielded expected numbers of hemizygous mice (only one intact GABPa allele), but no nullizygous (GABPa−/−) mice among 64 pups; we conclude that homozygous deletion of GABPa causes an embryonic lethal defect. To determine the effect of GABPa deletion on myeloid cell development, we bred heterozygous and homozygous floxed mice to LysMCre mice, which express Cre only in myeloid cells. These mice had a normal complement of myeloid cells but, unexpectedly, PCR indicated that their Gr1+ myeloid cells retained an intact (undeleted) floxed GABPa allele. We detected similar numbers of in vitro myeloid colonies from bone marrow of wild type, heterozygous floxed, and homozygous floxed progeny of LysMCre matings. However, PCR of twenty individual in vitro colonies from homozygous floxed mice indicated that they all retained an intact floxed allele. Breeding of floxed GABPa/LysMCre mice with hemizygous mice indicated that retention of a floxed allele was not due to incomplete deletion by LysMCre; rather, it appears that only myeloid cells that retain an intact GABPa allele can survive to mature in vitro or in vivo. We prepared murine embryonic fibroblasts from homozygous floxed mice and efficiently deleted GABPa in vitro. We found striking abnormalities in proliferation and G1/S phase arrest. We used quantitative RT-PCR to identify mechanisms that account for the altered growth of GABPa null cells. We found dramatically reduced expression of known GABP target genes that regulate DNA synthesis and cell cycle that appear to account for the proliferative defect. We conclude that GABPa is required for growth and maturation of myeloid cells and we identified downstream targets that may account for their failure to proliferate and mature in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document