Reduced Plasma Fibronectin Leads to Delayed Thrombus Growth in the Injured Arterioles in Vivo.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2619-2619 ◽  
Author(s):  
Jana Matuskova ◽  
Beatrice Cambien ◽  
Crystal Piffath ◽  
Denisa D. Wagner

Abstract In addition to von Willebrand factor and fibrinogen, plasma fibronectin (pFN) contributes significantly to thrombus development in arteries. Complete deficiency of plasma fibronectin (in pFN conditional knockout mice) affects thrombus formation and growth and subsequent occlusion of injured arterioles in vivo. We wanted to study a more physiological decrease of plasma fibronectin without having to induce interferon production in the mice to excise the FN gene. Reduced pFN levels are common in patients with liver disease, sepsis and following trauma or surgery. To evaluate the effect of a reduced amount of plasma fibronectin on thrombus formation at arterial shear rate, we used the ferric chloride model of arterial injury in fibronectin heterozygote mice which have 50% of the normal plasma level of FN. Two groups of mice were observed by intravital microscopy - FN heterozygote (FN+/−) and corresponding age matched wild-type controls (FN +/+). The reduced level of pFN did not affect the early platelet interaction with subendothelium but caused a delay of several minutes in appearance of the first thrombus in the injured arteriole (15 min in FN +/− vs 6 min in FN+/+, p<0.001). Although the thrombi were stably anchored to the vessel wall, the growth of the thrombus was slowed down because of the constant platelet shedding in fibronectin heterozygote mice. Consequently, this lack of firm adhesion of the platelets led to occlusion delay (36 min in FN +/− vs 28 min in FN+/+, p<0.01) with the majority of arterioles in the FN+/− mice not occluding by 40 minutes after injury. In conlusion, the phenotype of thrombosis in the mice with 50% of normal pFN level strikingly resembles the phenotype observed in mice with induced complete deficiency of pFN. This further emphasizes the fundamental role of this plasma protein in thrombosis in vivo in the arterial system.

Blood ◽  
2009 ◽  
Vol 113 (21) ◽  
pp. 5323-5329 ◽  
Author(s):  
Fumiaki Banno ◽  
Anil K. Chauhan ◽  
Koichi Kokame ◽  
Jin Yang ◽  
Shigeki Miyata ◽  
...  

Abstract ADAMTS13 is a multidomain protease that limits platelet thrombogenesis through the cleavage of von Willebrand factor (VWF). We previously identified 2 types of mouse Adamts13 gene: the 129/Sv-strain Adamts13 gene encodes the long-form ADAMTS13 having the same domains as human ADAMTS13, whereas the C57BL/6-strain Adamts13 gene encodes the short-form ADAMTS13 lacking the distal C-terminal domains. To assess the physiologic significance of the distal C-terminal domains of ADAMTS13, we generated and analyzed 129/Sv-genetic background congenic mice (Adamts13S/S) that carry the short-form ADAMTS13. Similar to wild-type 129/Sv mice (Adamts13L/L), Adamts13S/S did not have ultralarge VWF multimers in plasma, in contrast to 129/Sv-genetic background ADAMTS13-deficient mice (Adamts13−/−). However, in vitro thrombogenesis under flow at a shear rate of 5000 s−1 was accelerated in Adamts13S/S compared with Adamts13L/L. Both in vivo thrombus formation in ferric chloride–injured arterioles and thrombocytopenia induced by collagen plus epinephrine challenge were more dramatic in Adamts13S/S than in Adamts13L/L but less than in Adamts13−/−. These results suggested that the C-terminally truncated ADAMTS13 exhibited decreased activity in the cleavage of VWF under high shear rate. Role of the C-terminal domains may become increasingly important under prothrombotic conditions.


1985 ◽  
Vol 110 (4_Suppl) ◽  
pp. S31-S34 ◽  
Author(s):  
Lasse Viinikka

Summary Patients with diabetes mellitus are several fold more prone to various forms of vascular diseases than are the non-diabetic subjects. Because platelets are in the key position in thrombus formation and possibly in atherogenesis, much interest has focused on the role of platelets in the development of diabetic vascular disease. Most studies on this topic have suggested increased adhesiveness and aggregability of the platelets from diabetic patients. The increased production of von Willebrand factor may account for the enhanced adhesion. The shift of the balance between proaggregatory thromboxane A2 and antiaggregatory prostacyclin to the dominance of thromboxane A2 could explain the increased aggregability of diabetic platelets, but the data available at the moment do not allow the conclusion that such a change really exist in human in vivo. One recent work has suggested that the increased glycosylation of connective tissue proteins in diabetes would increase their aggregating potency, but also this finding needs further confirmation. Key word: adhesion, aggregation, thromboxane A2, prostacyclin, atherosclerosis, diabetic microangiopathy.


Blood ◽  
2010 ◽  
Vol 115 (23) ◽  
pp. 4862-4869 ◽  
Author(s):  
Mia Golder ◽  
Cynthia M. Pruss ◽  
Carol Hegadorn ◽  
Jeffrey Mewburn ◽  
Kimberly Laverty ◽  
...  

Abstract Type 2B von Willebrand disease (2B VWD) results from von Willebrand factor (VWF) A1 mutations that enhance VWF-GPIbα binding. These “gain of function” mutations lead to an increased affinity of the mutant VWF for platelets and the binding of mutant high-molecular-weight VWF multimers to platelets in vivo, resulting in an increase in clearance of both platelets and VWF. Three common 2B VWD mutations (R1306W, V1316M, and R1341Q) were independently introduced into the mouse Vwf cDNA sequence and the expression vectors delivered to 8- to 10-week-old C57Bl6 VWF−/− mice, using hydrodynamic injection. The resultant phenotype was examined, and a ferric chloride–induced injury model was used to examine the thrombogenic effect of the 2B VWD variants in mice. Reconstitution of only the plasma component of VWF resulted in the generation of the 2B VWD phenotype in mice. Variable thrombocytopenia was observed in mice expressing 2B VWF, mimicking the severity seen in 2B VWD patients: mice expressing the V1316M mutation showed the most severe thrombocytopenia. Ferric chloride–induced injury to cremaster arterioles showed a marked reduction in thrombus development and platelet adhesion in the presence of circulating 2B VWF. These defects were only partially rescued by normal platelet transfusions, thus emphasizing the key role of the abnormal plasma VWF environment in 2B VWD.


2014 ◽  
Vol 307 (3) ◽  
pp. H337-H345 ◽  
Author(s):  
Lara Gotha ◽  
Sang Yup Lim ◽  
Azriel B. Osherov ◽  
Rafael Wolff ◽  
Beiping Qiang ◽  
...  

Perlecan is a proteoglycan composed of a 470-kDa core protein linked to three heparan sulfate (HS) glycosaminoglycan chains. The intact proteoglycan inhibits the smooth muscle cell (SMC) response to vascular injury. Hspg2Δ3/Δ3 (MΔ3/Δ3) mice produce a mutant perlecan lacking the HS side chains. The objective of this study was to determine differences between these two types of perlecan in modifying SMC activities to the arterial injury response, in order to define the specific role of the HS side chains. In vitro proliferative and migratory activities were compared in SMC isolated from MΔ3/Δ3 and wild-type mice. Proliferation of MΔ3/Δ3 SMC was 1.5× greater than in wild type ( P < 0.001), increased by addition of growth factors, and showed a 42% greater migratory response than wild-type cells to PDGF-BB ( P < 0.001). In MΔ3/Δ3 SMC adhesion to fibronectin, and collagen types I and IV was significantly greater than wild type. Addition of DRL-12582, an inducer of perlecan expression, decreased proliferation and migratory response to PDGF-BB stimulation in wild-type SMC compared with MΔ3/Δ3. In an in vivo carotid artery wire injury model, the medial thickness, medial area/lumen ratio, and macrophage infiltration were significantly increased in the MΔ3/Δ3 mice, indicating a prominent role of the HS side chain in limiting vascular injury response. Mutant perlecan that lacks HS side chains had a marked reduction in the inhibition of in vitro SMC function and the in vivo arterial response to injury, indicating the critical role of HS side chains in perlecan function in the vessel wall.


Blood ◽  
2005 ◽  
Vol 106 (7) ◽  
pp. 2334-2339 ◽  
Author(s):  
Vandana S. Dole ◽  
Wolfgang Bergmeier ◽  
Heather A. Mitchell ◽  
Sarah C. Eichenberger ◽  
Denisa D. Wagner

AbstractThe presence of activated platelets and platelet-leukocyte aggregates in the circulation accompanies major surgical procedures and occurs in several chronic diseases. Recent findings that activated platelets contribute to the inflammatory disease atherosclerosis made us address the question whether activated platelets stimulate normal healthy endothelium. Infusion of activated platelets into young mice led to the formation of transient platelet-leukocyte aggregates and resulted in a several-fold systemic increase in leukocyte rolling 2 to 4 hours after infusion. Rolling returned to baseline levels 7 hours after infusion. Infusion of activated P-selectin-/- platelets did not induce leukocyte rolling, indicating that platelet P-selectin was involved in the endothelial activation. The endothelial activation did not require platelet CD40L. Leukocyte rolling was mediated solely by the interaction of endothelial P-selectin and leukocyte P-selectin glycoprotein ligand 1 (PSGL-1). Endothelial P-selectin is stored with von Willebrand factor (VWF) in Weibel-Palade bodies. The release of Weibel-Palade bodies on infusion of activated platelets was indicated by both elevation of plasma VWF levels and by an increase in the in vivo staining of endothelial P-selectin. We conclude that the presence of activated platelets in circulation promotes acute inflammation by stimulating secretion of Weibel-Palade bodies and P-selectin–mediated leukocyte rolling.


2020 ◽  
Vol 120 (03) ◽  
pp. 466-476
Author(s):  
Sibgha Tahir ◽  
Andreas H. Wagner ◽  
Steffen Dietzel ◽  
Hanna Mannell ◽  
Joachim Pircher ◽  
...  

Abstract Background von Willebrand factor (vWF) plays an important role in platelet activation. CD40–CD40 ligand (CD40L) induced vWF release has been described in large vessels and cultured endothelium, but its role in the microcirculation is not known. Here, we studied whether CD40 is expressed in murine microvessels in vivo, whether CD40L induces platelet adhesion and leukocyte activation, and how deficiency of the vWF cleaving enzyme ADAMTS13 affects these processes. Methods and Results The role of CD40L in the formation of beaded platelet strings reflecting their adhesion to ultralarge vWF fibers (ULVWF) was analyzed in the murine cremaster microcirculation in vivo. Expression of CD40 and vWF was studied by immunohistochemistry in isolated and fixed cremasters. Microvascular CD40 was only expressed under inflammatory conditions and exclusively in venous endothelium. We demonstrate that CD40L treatment augmented the number of platelet strings, reflecting ULVWF multimer formation exclusively in venules and small veins. In ADAMTS13 knockout mice, the number of platelet strings further increased to a significant extent. As a consequence extensive thrombus formation was induced in venules of ADAMTS13 knockout mice. In addition, circulating leukocytes showed primary and rapid adherence to these platelet strings followed by preferential extravasation in these areas. Conclusion CD40L is an important stimulus of microvascular endothelial ULVWF release, subsequent platelet string formation and leukocyte extravasation but only in venous vessels under inflammatory conditions. Here, the lack of ADAMTS13 leads to severe thrombus formation. The results identify CD40 expression and ADAMTS13 activity as important targets to prevent microvascular inflammatory thrombosis.


1994 ◽  
Vol 86 (2) ◽  
pp. 327-332 ◽  
Author(s):  
Edith Fressinaud ◽  
Augusto B. Federici ◽  
Giancarlo Castaman ◽  
Chantal Rothschild ◽  
Francesco Rodeghiero ◽  
...  

2001 ◽  
Vol 85 (05) ◽  
pp. 837-844 ◽  
Author(s):  
Angela Bertagna ◽  
Nadia Jahroudi

SummaryIonizing irradiation in patients is proposed to cause thrombus formation. An increase in von Willebrand factor secretion in response to irradiation is a major contributing factor to thrombus formation. We have previously reported that the increased VWF secretion in response to irradiation is mediated at the transcriptional level. The VWF core promoter fragment (sequences –90 to +22) was shown to contain the necessary cis-acting element(s) to mediate the irradiation response of the VWF gene. Here we report that a CCAAT element in the VWF promoter is the cis-acting element necessary for irradiation induction and that the NFY transcription factor interacts with this element. These analyses demonstrate that inhibition of NFY’s interaction with the CCAAT element abolishes the irradiation induction of the VWF promoter. These results provide a novel role for NFY and add this factor to the small list of irradiation-responsive transcription factors. Coimmunoprecipitation experiments demonstrated that NFY is associated with the histone acetylase P/CAF in vivo and that irradiation resulted in an increased association of NFY with coactivator P/CAF. We propose that irradiation induction of the VWF promoter involves a mechanism resulting in increased recruitment of the coactivator P/CAF to the promoter via the NFY transcription factor.


1979 ◽  
Author(s):  
H. Yamazaki ◽  
T. Motomiya ◽  
T. Sano

Although an interaction between platelets and arteriosclerotic vessel wall is thought to be important in thrombus formation, a little information was obtained in clinical subjects. We have reported that platelet aggregation Increased in patients with IHD after exercise. To analyse the mechanism of this phenomenon, changes in platelet sensitivity to ADP aggregation, plasma von Willebrand factor and beta-thromboglobulin level were measured in 30 IHD and 30 healthy controls before and Immediately after an isometric exercise (handgrip of 50% voluntary contraction for 2 min). Platelet sensitivity and vWF were determined by original methods detecting microscopically the highest dilution of serially two-fold diluted ADP or test plasma mixed with ristocetin to give platelet aggregation. Beta-TG was measured by RIA Kit. An effect of anti-platelet drug was also observed in IHD. The patients with IHD were administered with placebo or dipyridamole (400 mg/day for 4 weeks) in a crossover single blind fashion. Under placebo, platelet sensitivity to aggregation, vWF and beta-TG increased immediately after the exercise with a statistical significance in IHD. In the healthy control and IHD under dipyridamole, these increases were not observed. The phenomenon may suggest that platelets circulating in sclerotic vessels tend to release and are enhanced in reactivity with smaller stimuli than those in healthy. Such changes might be prevented with dipyridamole.


Sign in / Sign up

Export Citation Format

Share Document