Inhibition of p38 MAPK by SCIO-469 Suppresses TNF Generation and Promotes CD34+ Cell Survival in an In Vitro MDS Cell Culture Model.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3424-3424
Author(s):  
Tony A. Navas ◽  
Aaron N. Nguyen ◽  
Jing Y. Ma ◽  
Elizabeth G. Stebbins ◽  
Edwin Haghnazari ◽  
...  

Abstract Progress in the development of more effective therapeutics for myelodysplastic syndrome (MDS) has been limited by the lack of targets critical to the pathobiology of the disease. Ineffective hematopoiesis in MDS is characterized by accelerated proliferation and premature apoptotic death of progenitors and their progeny that is potentiated by the local generation of inhibitory molecules, including TNFa, TGFß, FasL, and VEGF. To identify upstream regulatory signals that may coordinate activation of inhibitory molecules, we used an in vitro cell culture model incorporating a CD34+ MDS cell line isolated from a RAEB-t patient, normal bone marrow stromal cells (BMSC), and/ or bone marrow mononuclear cells (BMMNC) to determine effects of cell-cell interactions on secretion of inhibitory hematopoietic cytokines. The role of p38 MAP kinase, a regulatory kinase involved in the convergence of inhibitory cytokine activation and signaling, was evaluated in this interaction. We found that p38 MAPK is induced under basal culture conditions in the MDS cell line and is further activated by TNFa or TGFß. In all cases, p38 activation was reduced by SCIO-469, a potent and specific inhibitor of p38a activity. SCIO-469 does not directly block p38 activation, suggesting a feedback loop is interrupted when p38 kinase activity is inhibited in MDS cells. To determine the effects of cellular interactions, the MDS cell line was co-cultured with either BMSC, BMMNCs or both from normal donors, and TNFa and FasL secretion were measured after 3 days incubation. TNFa and FasL were detected in culture supernatants when the MDS cell line was co-cultured with BMMNC but not when co-cultured with BMSC. TNFa secretion by BMMNCs was dependent on MDS cell contact and was significantly inhibited by SCIO-469. The addition of BMSC to the MDS and BMMNC co-culture prevented TNFa elevation, suggesting BMSCs as a dominant source for anti-inflammatory signal(s). VEGF, FGF-ß, TGFß2, BDNF, TIMP-1, TIMP-2 and IL-6 secretion by BMSC was induced by MDS co-culture, whereas SCIO-469 blocked cytokine induction. To determine the effects of SCIO-469 and MDS clone-induced BM cytokine secretion on normal CD34+ proliferation, we co-cultured BMMNCs and BMSC in transwell inserts in the presence or absence of the MDS cell line with or without SCIO-469. CD34+ proliferation was assessed in cells cultured in outer wells. CD34+ progenitors proliferated in culture at the same rate as those co-cultured with BMSC, BMMNC and MDS for 6 days. At longer intervals, viability of progenitors cultured with the MDS line declined, whereas treatment with SCIO-469 abrogated the decrease in CD34+ viability. These results implicate p38a as a critical target in the induction of pro-apoptotic cytokines in MDS, and that selective inhibition of p38 by SCIO-469 may provide a novel therapeutic strategy for MDS.

2004 ◽  
Vol 171 (4S) ◽  
pp. 295-295
Author(s):  
Fernando C. Delvecchio ◽  
Ricardo M. Brizuela ◽  
Karen J. Byer ◽  
W. Patrick Springhart ◽  
Saeed R. Khan ◽  
...  

Pathogens ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 9
Author(s):  
Donghoon Kang ◽  
Natalia V. Kirienko

Pseudomonas aeruginosa is a multidrug-resistant, opportunistic pathogen that utilizes a wide-range of virulence factors to cause acute, life-threatening infections in immunocompromised patients, especially those in intensive care units. It also causes debilitating chronic infections that shorten lives and worsen the quality of life for cystic fibrosis patients. One of the key virulence factors in P. aeruginosa is the siderophore pyoverdine, which provides the pathogen with iron during infection, regulates the production of secreted toxins, and disrupts host iron and mitochondrial homeostasis. These roles have been characterized in model organisms such as Caenorhabditis elegans and mice. However, an intermediary system, using cell culture to investigate the activity of this siderophore has been absent. In this report, we describe such a system, using murine macrophages treated with pyoverdine. We demonstrate that pyoverdine-rich filtrates from P. aeruginosa exhibit substantial cytotoxicity, and that the inhibition of pyoverdine production (genetic or chemical) is sufficient to mitigate virulence. Furthermore, consistent with previous observations made in C. elegans, pyoverdine translocates into cells and disrupts host mitochondrial homeostasis. Most importantly, we observe a strong correlation between pyoverdine production and virulence in P. aeruginosa clinical isolates, confirming pyoverdine’s value as a promising target for therapeutic intervention. This in vitro cell culture model will allow rapid validation of pyoverdine antivirulents in a simple but physiologically relevant manner.


2013 ◽  
Vol 45 (4) ◽  
pp. 325 ◽  
Author(s):  
Anurupa Maitra ◽  
Shahnaz Patel ◽  
VijayR Bhate ◽  
VilliS Toddywalla ◽  
MaithiliA Athavale

PLoS ONE ◽  
2012 ◽  
Vol 7 (4) ◽  
pp. e35008 ◽  
Author(s):  
Elhaseen Elamin ◽  
Daisy Jonkers ◽  
Kati Juuti-Uusitalo ◽  
Sven van IJzendoorn ◽  
Freddy Troost ◽  
...  

2019 ◽  
Vol 64 (2) ◽  
pp. 112-123 ◽  
Author(s):  
Teruo Miyazaki ◽  
Akira Honda ◽  
Tadashi Ikegami ◽  
Takashi Iida ◽  
Yasushi Matsuzaki

2011 ◽  
Vol 113 (6) ◽  
pp. 1468-1475 ◽  
Author(s):  
Jun Zhang ◽  
Yuanlin Dong ◽  
Zhipeng Xu ◽  
Yiying Zhang ◽  
Chuxiong Pan ◽  
...  

2020 ◽  
Vol 8 (6) ◽  
pp. 831 ◽  
Author(s):  
Alec O’Keeffe ◽  
Christine Hale ◽  
James A. Cotton ◽  
Vanessa Yardley ◽  
Kapish Gupta ◽  
...  

The discovery of novel anti-leishmanial compounds remains essential as current treatments have known limitations and there are insufficient novel compounds in development. We have investigated three complex and physiologically relevant in vitro assays, including: (i) a media perfusion based cell culture model, (ii) two 3D cell culture models, and (iii) iPSC derived macrophages in place of primary macrophages or cell lines, to determine whether they offer improved approaches to anti-leishmanial drug discovery and development. Using a Leishmania major amastigote-macrophage assay the activities of standard drugs were investigated to show the effect of changing parameters in these assays. We determined that drug activity was reduced by media perfusion (EC50 values for amphotericin B shifted from 54 (51–57) nM in the static system to 70 (61–75) nM under media perfusion; EC50 values for miltefosine shifted from 12 (11–15) µM in the static system to 30 (26–34) µM under media perfusion) (mean and 95% confidence intervals), with corresponding reduced drug accumulation by macrophages. In the 3D cell culture model there was a significant difference in the EC50 values of amphotericin B but not miltefosine (EC50 values for amphotericin B were 34.9 (31.4–38.6) nM in the 2D and 52.3 (46.6–58.7) nM in 3D; EC50 values for miltefosine were 5.0 (4.9–5.2) µM in 2D and 5.9 (5.5–6.2) µM in 3D (mean and 95% confidence intervals). Finally, in experiments using iPSC derived macrophages infected with Leishmania, reported here for the first time, we observed a higher level of intracellular infection in iPSC derived macrophages compared to the other macrophage types for four different species of Leishmania studied. For L. major with an initial infection ratio of 0.5 parasites per host cell the percentage infection level of the macrophages after 72 h was 11.3% ± 1.5%, 46.0% ± 1.4%, 66.4% ± 3.5% and 75.1% ± 2.4% (average ± SD) for the four cells types, THP1 a human monocytic cell line, mouse bone marrow macrophages (MBMMs), human bone marrow macrophages (HBMMs) and iPSC derived macrophages respectively. Despite the higher infection levels, drug activity in iPSC derived macrophages was similar to that in other macrophage types, for example, amphotericin B EC50 values were 35.9 (33.4–38.5), 33.5 (31.5–36.5), 33.6 (30.5—not calculated (NC)) and 46.4 (45.8–47.2) nM in iPSC, MBMMs, HBMMs and THP1 cells respectively (mean and 95% confidence intervals). We conclude that increasing the complexity of cellular assays does impact upon anti-leishmanial drug activities but not sufficiently to replace the current model used in HTS/HCS assays in drug discovery programmes. The impact of media perfusion on drug activities and the use of iPSC macrophages do, however, deserve further investigation.


2015 ◽  
Vol 53 (1) ◽  
pp. 66-72 ◽  
Author(s):  
Robert Duliński ◽  
◽  
Emilia Katarzyna Cielecka ◽  
Małgorzata Pierzchalska ◽  
Krzysztof Żyła ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document