Immune-Mediated Hepatitis Drives Bone marrow to Hepatocyte Plasticity.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3599-3599
Author(s):  
Marc H. Dahlke ◽  
Felix C. Popp ◽  
Pompiliu Piso ◽  
Hans J. Schlitt ◽  
Patrick Bertolino

Abstract Liver dysfunction is a major health burden world-wide. Future cell-based therapies for liver regeneration may benefit from the fact that bone marrow cells can fuse with or transdifferentiate into hepatocytes. All models demonstrating bone marrow to hepatocyte plasticity presented so far, however, have used highly artifical conditions of liver regeneration - applying toxins, genetic pressure models or liver resection. We have set up a model of transgenic T cell induced bystander hepatitis in bone marrow chimeras to assess the effect of hepatitis, a common liver pathology in humans, as an enhancer of bone marrow to hepatocyte plasticity events. MHC haplotype (Kb) transgenic bone marrow from 178.3 mice or control bone marrow from B10.BR (Kk) mice was transplanted into sublethally irradiated B10.BR (Kk) mice. Hepatitis was induced by repeated injections of Des Kk T cell receptor transgenic T cells against the Kb antigen. In additonal groups Retrorsine was used as an agent inhibiting endogenous hepatocyte proliferation and GCSF for mobilisation of bone marrow stem cells. Repeated injections of transgenic T cells induced subsequent waves of hepatitis in recipients of MHC haplotype transgenic bone marrow but not in control animals confirmed by serum ALT levels. Hepatocyte single cell suspensions from animals suffering from hepatitis revealed an increased expression of donor bone marrow derived antigen. This could be further enhanced by either increasing the number of circulating stem cells or by inhibiting the endogenous response of resident hepatocytes. FISH analysis showed fusion nuclei on a single cellular level. T cell receptor transgenic T cells induce bystander hepatitis in an antigen specific manner. This inflammatory response drives the plasticity of bone marrow cells to hepatocytes and their potential contribution to liver regeneration. Fusion between donor cells and resident hepatocytes is the underlying mechanism of liver regeneration in this model mimicking a common liver pathology.

1995 ◽  
Vol 182 (3) ◽  
pp. 759-767 ◽  
Author(s):  
K Sato ◽  
K Ohtsuka ◽  
K Hasegawa ◽  
S Yamagiwa ◽  
H Watanabe ◽  
...  

In addition to the major intrathymic pathway of T cell differentiation, extrathymic pathways of such differentiation have been shown to exist in the liver and intestine. In particular, hepatic T cells of T cell receptors or CD3 of intermediate levels (i.e., intermediate T cell receptor cells) always contain self-reactive clones and sometimes appear at other sites, including the target tissues in autoimmune diseases and the tumor sites in malignancies. To prove their extrathymic origin and self reactivity, in this study we used thymectomized, irradiated (B6 x C3H/He) F1 mice subjected to transplantation of bone marrow cells of B6 mice. It was clearly demonstrated that all T cells generated under athymic conditions in the peripheral immune organs are intermediate CD3 cells. In the case of nonthymectomized irradiated mice, not only intermediate CD3 cells but also high CD3 cells were generated. Phenotypic characterization showed that newly generated intermediate CD3 cells were unique (e.g., interleukin 2 receptor alpha-/beta+ and CD44+ L-selectin-) and were, therefore, distinguishable from thymus-derived T cells. The precursor cells of intermediate CD3 cells in the bone marrow were Thy-1+ CD3-. The extrathymic generation of intermediate CD3 cells was confirmed in other combinations of bone marrow transplantation, C3H --> C3H and B10.Thy1.1 --> B6.Thy1.2. The generated intermediate CD3 cells in the liver contained high levels of self-reactive clones estimated by anti-V beta monoclonal antibodies in conjunction with the endogenous superantigen minor lymphocyte-stimulating system, especially the combination of B6 --> (B6 x C3H/He) (graft-versus-host-situation).(ABSTRACT TRUNCATED AT 250 WORDS)


1999 ◽  
Vol 190 (9) ◽  
pp. 1257-1262 ◽  
Author(s):  
Chiyu Wang ◽  
Molly A. Bogue ◽  
Jonathan M. Levitt ◽  
David B. Roth

In SCID (severe combined immunodeficient) mice, proper assembly of immunoglobulin and T cell receptor (TCR) genes is blocked by defective V(D)J recombination so that B and T lymphocyte differentiation is arrested at an early precursor stage. Treating the mice with gamma irradiation rescues V(D)J rearrangement at multiple TCR loci, promotes limited thymocyte differentiation, and induces thymic lymphomas. These effects are not observed in the B cell lineage. Current models postulate that irradiation affects intrathymic T cell precursors. Surprisingly, we found that transfer of irradiated SCID bone marrow cells to unirradiated host animals rescues both TCR rearrangements and thymocyte differentiation. These data indicate that irradiation affects precursor cells at an earlier stage of differentiation than was previously thought and suggest new models for the mechanism of irradiation rescue.


Blood ◽  
1996 ◽  
Vol 87 (7) ◽  
pp. 3019-3026 ◽  
Author(s):  
K Kubo ◽  
K Yamanaka ◽  
H Kiyoi ◽  
H Fukutani ◽  
M Ito ◽  
...  

From the viewpoint of T-cell receptor (TCR) repertoire, we studied the role of T cells in acute graft-versus-host disease (GVHD) after allogeneic bone marrow transplantation (allo-BMT) from an HLA-identical sibling. By means of inverse polymerase chain reaction method and DNA sequencing, we analyzed TCR-alpha and -beta transcripts from GVHD lesions and peripheral blood (PB) in a patient with typical GVHD together with PB from donor. At the initial onset of GVHD, V alpha-7 and -19 subfamilies were oligoclonally expanded in the PB compared with those in the oral mucosal lesions. At the second onset, V alpha-2, and V beta-6 subfamilies were more frequently detected in the cutaneous lesion than in the PB. Some TCR transcripts were recurrently found either in the mucosal or cutaneous lesions (or in both) and not in the PB. Furthermore, some of recurrent TCR transcripts in the lesions shared V gene segments and common motifs of complementarity determining region-3. These findings suggested that T cells infiltrating the GVHD lesions recognized a limited kind of antigens presented by patient's tissues with GVHD, and that T-cell repertoire in the GVHD lesions was different from that in the PB.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3266-3266
Author(s):  
Pablo Laje ◽  
William H. Peranteau ◽  
Masayuki Endo ◽  
Philip W. Zoltick ◽  
Alan W. Flake

Abstract The developing fetal immune system provides a unique opportunity to manipulate normal immunologic development for therapeutic prenatal and anticipated postnatal interventions. In previous studies we have shown that allogeneic in utero hematopoietic cell transplantation (IUHCT) results in donor specific tolerance that can subsequently facilitate non-myeloablative postnatal cellular or organ transplants. It follows that in utero injection of transduced hematopoietic stem cells (HSC) could potentially induce tolerance to a transgene encoded protein. We hypothesized that expression of a transduced antigenic protein by HSC and their progeny would alter thymic T cell development resulting in deletion of antigen specific T-cells. To test this hypothesis, we used the mammary tumor virus (MTV) superantigen system to evaluate the effect of IUHCT of transduced HSC on T cell development. In this system, expression of different MTV oncogenes by different I-E+ strains of mice results in deletion of T cells expressing the relevant Vβ T cell receptor. Specifically, mice which are Mtv7+ delete T cells expressing the Vβ6 T-cell receptor. In this study, CD150+CD48− enriched Balb/c (I-E+ Mtv7−) HSC were transduced with an HIV-based lentivirus expressing MTV7 under an MND promoter. 1.5E+05 transduced cells were injected intravascularly via the vitelline vein into E14 Balb/c fetuses. Non-injected age matched naive Balb/c mice served as the control group. The peripheral blood (PB) and thymuses of injected fetuses and control mice were harvested at day of life (DOL) 10, 20 and 60 and analyzed by flow cytometry for T lymphocyte Vβ6 expression. Additionally, the T cell composition of the thymus was assessed at DOL10 for CD4 and CD8 single positive (SP) and CD4/CD8 double positive (DP) cells. Thymic flow cytometric analysis at DOL10 revealed that greater than 98% of the T cells were CD4CD8 DP, a stage that has not yet undergone negative selection. No significant difference was noted in the percentage of thymic Vβ6+ DP T-cells at this time point or at DOL20 and DOL60. In contrast, there was a significant decrease in the percentage of Vβ6+ peripheral blood SP cells in those mice injected with MTV7 transduced HSC relative to control mice at DOL10, DOL20 and DOL60 (p<0.05) (Fig 1). The current study supports the ability of enriched transduced HSC to induce deletion of transgene specific T cells after IUHCT. In the future, this strategy may be useful to promote tolerance for pre or postnatal cellular or gene therapy. Figure Figure


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2046-2046 ◽  
Author(s):  
Waseem Qasim ◽  
Persis Jal Amrolia ◽  
Sujith Samarasinghe ◽  
Sara Ghorashian ◽  
Hong Zhan ◽  
...  

Abstract Chimeric antigen receptor (CAR)19 T-cells exhibit powerful anti-leukemic effects in patients with B cell malignancies. However, the complexity of production of patient bespoke T cell products is a major barrier to the broader application of this approach. We are investigating a novel strategy to enable "off-the-shelf"' therapy with mismatched donor CAR19 T cells. Transcription activator-like effector nucleases (TALEN)s can be used to overcome HLA barriers by eliminating the risk of graft-versus-host disease (GvHD) through disruption of T cell receptor expression, and by simultaneously targeting CD52, cells can be rendered insensitive to the lymphodepleting agent Alemtuzumab. Administration of Alemtuzumab can then be exploited to prevent host-mediated rejection of HLA mismatched CAR19 T cells. We manufactured a bank of such cells from volunteer donor T cells under GMP conditions on behalf of Cellectis S.A for final stage validation studies using a third generation self inactivating lentiviral vector encoding a 4g7 CAR19 (CD19 scFv- 41BB- CD3ζ) linked to RQR8, an abbreviated sort/suicide gene encoding both CD34 and CD20 epitopes. Cells were then electroporated with two pairs of TALEN mRNA for multiplex targeting of both the T cell receptor alpha constant chain locus, and the CD52 gene locus. Following ex-vivo expansion, cells still expressing TCR were depleted using CliniMacs alpha/beta TCR depletion, yielding a T cell product with <1% TCR expression, 85% of which expressed CAR19, and 64% becoming CD52 negative. This universal CAR19 (UCART19) cell bank has been characterized in detail, including sterility, molecular and cytometric analyses and human/murine functional studies ahead of submissions for regulatory approvals and Phase 1 testing in trials for relapsed B cell leukaemia. In the interim we received a request for therapy on a compassionate basis for an infant with refractory relapsed B-ALL, and with the agreement of Cellectis, we treated this first patient under UK special therapy regulations. An 11 month girl with high risk CD19+infant ALL (t(11;19) rearrangement) relapsed in bone marrow 3 months after a myeloablative 8/10 mismatched unrelated donor transplant. Leukaemic blasts expressed CD19 but were CD52negative. Her disease progressed despite treatment with Blinatumomab (70% blasts in marrow) and we were unable to generate donor-derived CAR19 T cells on an existing study. Following institutional ethics review, detailed counseling, and parental consent, the patient received cytoreduction with Vincristine, Dexamethasone and Asparaginase followed by lymphodepleting conditioning with Fludarabine 90mg/m2, Cyclophosphamide 1.5g/m2 and Alemtuzumab 1mg/kg. Immediately prior to infusion of UCART19 cells, the bone marrow showed persisting disease (0.5% FISH positive). She received a single dose (4.5x106/kg) of UCART19 T cells without any significant toxicity. To date there has been no significant perturbation of cytokine levels in peripheral blood, and no indication of cytokine release syndrome. Although profoundly lymphopenic, UCART19 T cells were detectable by qPCR in the circulation by day 14 and at increased levels in both blood (VCN 0.35) and marrow (VCN 0.22) on day 28. The patient exhibited signs of count recovery and the bone marrow, while hypoplastic, was in cytogenetic and molecular remission. Chimerism was 90% donor, and a clearly demarcated population (7%) of third party cells indicated persistence of UCART19. A residual persistence of 3% recipient cells in the marrow suggests that leukemic clearance was not mediated by transplant mediated alloreactivity. Within the short period of follow up available, our intervention comprising lymphodepletion and infusion of UCART19 T cells has induced molecular remission where all other treatments had failed. This first-in-man application of TALEN engineered cells provides early proof of concept evidence for a ready-made T cell strategy that will now be tested in early phase clinical trials. Disclosures Qasim: CATAPULT: Research Funding; CELLMEDICA: Research Funding; CALIMMUNE: Research Funding; MILTENYI: Research Funding; AUTOLUS: Consultancy, Equity Ownership, Research Funding; CELLECTIS: Research Funding. Off Label Use: UCART19 T Cells are an unlicensed investigational medicinal product and in this case were used under MHRA special licence arrangements. Stafford:CELLECTIS: Research Funding. Peggs:Cellectis: Research Funding; Autolus: Consultancy, Equity Ownership. Thrasher:CATAPULT: Patents & Royalties, Research Funding; MILTENYI: Research Funding; AUTOLUS: Consultancy, Equity Ownership, Research Funding. Pule:AUTOLUS: Employment, Equity Ownership, Research Funding; CELLECTIS: Research Funding; AMGEN: Honoraria; UCLB: Patents & Royalties.


1986 ◽  
Vol 164 (1) ◽  
pp. 375-380 ◽  
Author(s):  
C L Chen ◽  
L L Ager ◽  
G L Gartland ◽  
M D Cooper

A mouse mAb, CT-3, recognizes on chicken T cells a complex of three polypeptides, Mr 20,000, 19,000, and 17,000, two of which are N-glycosylated. The CT-3 antibody is mitogenic for chicken T cells, and it coprecipitates two additional polypeptides of Mr 49,000 and 38,000 in lysates of T cell membranes. Ontogeny studies revealed that 5-6 d after thymic influx of hemopoietic stem cells, their thymocyte progeny begin to express the T3/TCR complex. After hatching 1 wk later, the CT-3+ cells begin splenic migration in large numbers.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4343-4343
Author(s):  
Ashok Malani ◽  
Robert Weigand ◽  
Vicram Gupta ◽  
Lawrence Hertzberg ◽  
Gautam Rangineni

Abstract Immunophenotyping by flow cytometry has revolutinized the diagnosis of blood cell disorders such as leukemias and lymphomas and is now commonly used in diagnosis and prognosis of such patients. We describe a case of human ehrlichiosis mimicking T-cell lymphoma/leukemia based on flow cytometry of bone marrow cells and confirmed by T-cell receptor gene rearrangement (TCR) by polymerase chain reaction (PCR). Treatment with doxycycline reversed these findings. A 20-year-old, Amish female presented with fatigue, fever, chills, sweating, low back pain, and lower abdominal pain for 2 days. She admitted to multiple bites from ticks 2 weeks prior to presentation and also reported having numerous animals such as cats, dogs, cows, goats, horses at her farm where she lived. Clinical exam was significant for fever of 101.4 F, heart rate of 118/min, BP of 80/60 mm Hg and a distended urinary bladder which was treated by catheter drainage. Relevant laboratory tests are shown in table 1. Table 1 Hemoglobin 9.7 12–16 gm/dl WBC 0.8 4–10.8 k/mm3 Platelets 16 150–400 k/mm3 Segments 62% 50–75% Lymphocytes 15% 20–40% Sodium 140 125–135 mmol/L AST 126 0–37 IU/L ALT 71 0–65 IU/L Alk. Phos. 49 50–136 IU/L LDH 691 91–190 IU/L Chest radiograph, Ultrasound and Computed tomography scan of the abdomen were within normal limits. With a provisional diagnosis of septic shock and suspicion for Ehrlichiosis, therapy with intravenous(IV) fluids, vasopressors and doxycycline was initiated. Blood was cultured and a sample was forwarded to CDC for analysis of tick borne infections. In order to evaluate and exclude blood disorders like leukemia and lymphoma in a patient with fever and pancytopenia, a bone marrow aspiration and biopsy was performed. It showed cytologically abnormal-appearing, large sized lymphocyte population with irregular nuclear membranes. Flow cytometry of the bone marrow cells revealed 8–10% of phenotypically abnormal T-cells with abnormally weak intensity of membrane surface CD3, CD5, and CD7 expression and negativeCD4 and CD8 expression. These cells also expressed HLA-DR and CD38 at uncommonly bright intensity and there were no CD34 benign immature B-cells. Cytogenetics however was normal. Interestingly, PCR analysis was positive for clonal TCR gamma gene rearrangement. These results were reported as consistent with involvement of marrow by a peripheral T-cell lymphoma/leukemia T-Cell receptor PCR analysis T-Cell receptor PCR analysis Since the patient was steadily improving with IV Doxycycline, we decided to wait and repeated the bone marrow aspiration a week later. This time the bone marrow exam was found to be normal morphologically, on flow cytometry and TCR gamma gene rearrangement by PCR. Patient was discharged on oral doxycycline after a stay of 13 days in the hospital. The blood test for ehrlichiosis from CDC was reported 3 weeks later as positive for Ehrlichia chaffeensis by PCR. Patient is doing well 6 months after the illness. This case illustrates that Ehrlichiosis can transiently cause T cell abnormalities resulting in false positive analysis on flow cytometry and TCR gamma gene rearrangement, thereby leading to false positive diagnosis of Ehrlichiosis. Reconfirmation with repeat studies need to be done before considering active treatment for lymphoma/leukemia.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4479-4479
Author(s):  
Kathryn W Juchem ◽  
Britt Anderson ◽  
Cuiling Zhang ◽  
Arlene Sharpe ◽  
Jennifer McNiff ◽  
...  

Graft-versus-host disease (GVHD) is a complication of allogeneic stem cell transplantation (alloSCT). In murine models of alloSCT, naive T cells (TN) cause GVHD while effector memory T cells (TEM) do not. To determine why TEM fail to cause GVHD, we generated a novel T-cell receptor transgenic GVHD model. In this model CD4+ TS1 T cells, which recognize an epitope of influenza hemagglutinin (HA), are transferred, along with syngeneic bone marrow, into irradiated transgenic recipients that express HA in all tissues (HA104 Tg mice). We found that TS1 TN induced early and prolonged weight loss and caused GVHD-like pathology in the skin, liver and colon. In contrast, TS1 TEM induced mild, transient weight loss and minimal pathology, demonstrating that TEM have repertoire-independent characteristics that limit their ability to induce GVHD. Post transplant analysis revealed that TS1 TEM progeny, relative to TS1 TN progeny, produced less IFN-γ, proliferated and accumulated less in the colon, and expressed higher levels of the inhibitory molecule PD-1. To investigate whether PD-1 was responsible for limiting pathogenesis by TEM, we used hosts and donor bone marrow lacking both PD-L1 and PD-L2. The absence of PD-L1/2 did not enable TS1 TEM to cause early weight loss. However, between 35 and 60 days post transplant, TS1 TEM recipients lacking PD-L1/2 rapidly began losing weight and approximately 50% died. Weight loss in TEM recipients was dependent upon lack of PD-L1/2 expression on both donor bone marrow and host cells, including radioresistant stromal cells, suggesting a possible role for PD-L1/2 expressed in tissues. Indeed, global absence of PD-L1 alone, which (in contrast to PD-L2) is expressed on parenchymal tissues, also resulted in late weight loss in recipients given TEM. To determine the reason for late weight loss, we surveyed tissue histopathology. Surprisingly, in the absence of PD-L1/2, TEM recipients did not develop exacerbated colon pathology but instead developed mononuclear infiltrates and mycocyte necrosis in the heart, accompanied by heart block and decreased cardiac output. Interestingly, heart disease was also seen in PD-L1/2 deficient TN recipients that survived to later time points, indicating that the protective role of PD-L1/2 applied more generally to GVHD induced by CD4 T cells. Strikingly, the extensive infiltrates in affected hearts were mostly comprised of non-TS1 T cells, including both CD4 and CD8 cells. These cells are likely host-derived, as severe cardiac infiltrates were seen when Rag-deficient donor BM was used to reconstitute host hematopoiesis. We therefore hypothesize that in GVHD PD-L1/2 normally prevent “allogeneic” T cell mediated damage but also protect from subsequent syngeneic T cell-mediated pathogenesis that could contribute to prolonged disease. This effect is tissue specific and could in part be due to parenchymal expression of PD-L1 in certain organs. It is possible that such mechanisms could explain more chronic phases of GVHD, which differs from acute GVHD. Ongoing depletion experiments will determine the relative contributions of donor TS1 T cells, donor bone marrow derived T cells and host T cells. Disclosures: No relevant conflicts of interest to declare.


2002 ◽  
Vol 127 (3) ◽  
pp. 527-532 ◽  
Author(s):  
K. S. BUCK ◽  
E. M. FOSTER ◽  
D. WATSON ◽  
J. BARRATT ◽  
I. Z. A. PAWLUCZYK ◽  
...  

Blood ◽  
2001 ◽  
Vol 98 (4) ◽  
pp. 1116-1121 ◽  
Author(s):  
Ephraim P. Hochberg ◽  
Antoinette C. Chillemi ◽  
Catherine J. Wu ◽  
Donna Neuberg ◽  
Christine Canning ◽  
...  

Following myeloablative therapy, it is unknown to what extent age-dependent thymic involution limits the generation of new T cells with a diverse repertoire. Normal T-cell receptor gene rearrangement in T-cell progenitors results in the generation of T-cell receptor rearrangement excision circles (TRECs). In this study, a quantitative assay for TRECs was used to measure T-cell neogenesis in adult patients with leukemia who received myeloablative therapy followed by transplantation of allogeneic hematopoietic stem cells. Although phenotypically mature T cells had recovered by 1 to 2 months after bone marrow transplantation (BMT), TREC levels remained low for 3 months after BMT. T-cell neogenesis became evident by 6 months, and normal levels of adult thymic function were restored at 6 to 12 months after BMT. Subsequent leukemia relapse in some patients was associated with reduced TREC levels, but infusion of mature donor CD4+ T cells resulted in rapid restoration of thymic function. These studies demonstrate that T-cell neogenesis contributes to immune reconstitution in adult patients and suggest that thymic function can be manipulated in vivo.


Sign in / Sign up

Export Citation Format

Share Document