Hmgb3 Deficiency Inhibits Down-Regulation of c-kit in Hematopoietic Stem Cells.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 372-372
Author(s):  
Michael J. Nemeth ◽  
Stacie M. Anderson ◽  
Lisa J. Garrett-Beal ◽  
David M. Bodine

Abstract Hmgb3 is an X-linked member of a family of sequence-independent chromatin-binding proteins that is expressed in HSC-enriched lin−, c-kitHI, Sca-1HI, IL-7Rα− (KSIL) cells and Ter119+ erythroid cells. To define Hmgb3 function, we generated hemizygous mice (Hmgb3−/Y) using 129/SvJ ES cells. Hmgb3−/Y mice contain normal numbers of KSIL cells that are capable of normal repopulation and self-renewal. However, these mice have 1.6-fold fewer common lymphoid progenitors (CLP) and 3-fold fewer common myeloid progenitors (CMP) (p < 0.05). We hypothesized that the role of Hmgb3 in early hematopoiesis involves c-kit regulation. We observed that the level of c-kit mRNA in Hmgb3−/Y HSCs increased 30% compared to wild-type (WT) (p = 0.05). We used 5-fluorouracil (5-FU), which has been shown to down-regulate c-kit on HSCs, to characterize the interaction between Hmgb3 and c-kit. We monitored Hmgb3 expression in KSIL and lin−, Sca-1+, c-kit− cells before and after 5-FU treatment (150 mg/kg) using phenotypically normal transgenic mice containing an IRES-GFP cassette knocked into the 3′ UTR of Hmgb3. Prior to 5-FU treatment, 27% of KSIL cells were GFP+ (these cells were absent 4 days post-injection {p.i.}). In contrast, 1.8% of lin−, c-kit−, Sca-1+ cells were GFP+ before 5-FU treatment whereas 26% of lin−, c-kit−, Sca-1+ cells were GFP+ 4 days p.i. The increased proportion of GFP+ lin-, c-kit−, Sca-1+ cells after 5-FU treatment is consistent with previous findings that repopulating activity resides within the c-kit−/LO population in 5-FU treated bone marrow and our finding that Hmgb3 serves as a marker for long-term repopulating activity. To determine the time course of c-kit regulation, we compared bone marrow from 5-FU injected Hmgb3−/Y and WT mice for analysis at 2, 4, and 6 days p.i. Two days p.i., both WT and Hmgb3−/Y mice contained similar numbers of bone marrow cells (7 x 106 cells/hind limb) and the KSIL population was absent. By four days p.i., the bone marrow cellularity of WT mice declined to 5.5 ± 0.9 x 106 cells/hind limb and KSIL cells were still absent. However, in Hmgb3−/Y mice 4 days p.i., bone marrow cellularity stabilized at 7.9 ± 0.8 x 106 cells/hind limb, an increase of 43% compared to WT (p < 0.01), along with the re-emergence of the KSIL population. To determine whether the Hmgb3−/Y lin−, c-kit−, Sca-1+ population contains repopulating HSCs after 4 days of 5-FU treatment similar to WT mice, we performed repopulation assays using KSIL and lin−, c-kit−, Sca-1+ cells sorted from 4 day p.i. 5-FU treated Hmgb3−/Y mice. Recipients received either 2 x 104 KSIL or 2 x 105 lin−, c-kit−, Sca-1+ cells (Ly 5.2) from 5-FU treated Hmgb3−/Y mice along with a radioprotective dose of 3 x 105 congenic (Ly 5.1) bone marrow cells. FACS analysis performed on control recipients transplanted with congenic marrow exhibited < 1% Ly 5.2 cells in the bone marrow 16 weeks after transplant. Pre-5-FU treatment, 88% of bone marrow cells were donor derived in recipients of Hmgb3−/Y KSIL cells. There was no detectable engraftment of Hmgb3−Y lin−, c-kit−, Sca-1+ cells. In contrast to WT mice, both KSIL and lin−, c-kit−, Sca-1+ cells from 5-FU treated Hmgb3−/Y mice were capable of long-term repopulation (62–82% donor derived cells). We conclude that Hmgb3 deficiency facilitates the reemergence of c-kitHI HSCs following 5-FU treatment. Mechanisms involving either enhanced HSC self-renewal or delayed differentiation into CLPs and CMPs are both consistent with our results.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 95-95 ◽  
Author(s):  
Hui Z. Zhang ◽  
Svetlana Rogulina ◽  
Wendy Chen ◽  
Barbara A. Degar ◽  
Bernard G. Forget

Abstract Pitx2, a homeodomain gene preferentially expressed in murine hematopoietic stem/progenitor cells, is also a downstream target of genes important for hematopoiesis such as MLL and Wnt/Dvl/β-Catenin. We have previously reported that Pitx2 null hematopoietic stem cells (HSCs) can contribute to multi-lineage hematopoiesis under physiologic conditions. We have now carried out serial bone marrow transplantation experiments and demonstrated that after the 3rd round of serial transplantation, Pitx2 null cells reconstituted only 28.6% of the recipient hematopoietic cells as compared to 60% in the case of wild type cells (P<0.001). There were no Pitx2 null donor-derived cells in recipient mice after the 4th round of transplantation, whereas donor-derived chimerism was 57% with wild type cells (P<0.001), and 26% with Pitx2 +/− cells (P<0.001). Therefore, Pitx2 null HSCs have decreased self renewal capacity. To further study the function of Pitx2 in HSC, we constitutively overexpressed the Pitx2 gene in murine bone marrow cells following transduction using a MSCV/IRES/GFP retroviral vector, and analyzed the effects on hematopoiesis in vitro and in vivo. Bone marrow cells overexpressing Pitx2 were isolated on the basis of their GFP expression and analyzed for their colony forming ability in vitro. Retrovirally transduced bone marrow cells were also transplanted into lethally irradiated mice, and the transplanted mice were observed for long-term reconstitution. Colony-forming unit assays showed that Pitx2 overexpressing bone marrow cells, compared to control cells transduced with vector only, had increased numbers of GM colony forming units and reduced numbers of megakaryocytic colony forming units. Pitx2-overexpressing cells continued to form GM colonies after more than eight serial replatings. When these cells were cultured in liquid medium containing SCF, IL-3 and IL-6, they gave rise to cells that stained positively either for alpha naphthyl butyrate, indicating monocytic differentiation, or for peroxidase, indicating neutrophilic differentiation. The ability of these GM-colony forming cells to cause leukemia is currently under investigation. Long-term reconstitution of hematopoiesis in mice by Pitx2 over-expressing HSCs was demonstrated by identifying GFP positive multi-lineage peripheral blood cells four months following transplantation. One of these mice manifested leukemia at this time, as evidenced by a markedly elevated WBC count and other hematologic abnormalities. The leukemic WBCs had very high levels of GFP and Pitx2 expression and were shown to contain two retroviral integration sites, neither of which involved a known oncogene or overexpression of the gene at the integration site. Immunophenotyping by flow cytometry demonstrated that the majority of the leukemic cells were c-kit positive and expressed the megakaryocytic marker CD41, as well as the common myeloid progenitor marker, CD16/32. Some of the cells expressed the erythroid marker Ter119. The leukemic cells did not express any lymphoid markers, including CD3ε, B220, CD19, and IL7R3. This Pitx2-overexpression-associated leukemia was transplantable. Experiments are under way to characterize the leukemia initiating cells. Taken together, our results provide evidence that the homeodomain gene Pitx2 plays a role in the self-renewal of hematopoietic stem/progenitor cells.


Blood ◽  
1996 ◽  
Vol 87 (10) ◽  
pp. 4136-4142 ◽  
Author(s):  
I Kawashima ◽  
ED Zanjani ◽  
G Almaida-Porada ◽  
AW Flake ◽  
H Zeng ◽  
...  

Using in utero transplantation into fetal sheep, we examined the capability of human bone marrow CD34+ cells fractionated based on Kit protein expression to provide long-term in vivo engraftment. Twelve hundred to 5,000 CD34+ Kit-, CD34+ Kit(low), and CD34+ Kit(high) cells were injected into a total of 14 preimmune fetal sheep recipients using the amniotic bubble technique. Six fetuses were killed in utero 1.5 months after bone marrow cell transplantation. Two fetuses receiving CD34+ Kit(low) cells showed signs of engraftment according to analysis of CD45+ cells in their bone marrow cells and karyotype studies of the colonies grown in methylcellulose culture. In contrast, two fetuses receiving CD34+ Kit(high) cells and two fetuses receiving CD34+ Kit- cells failed to show evidence of significant engraftment. Two fetuses were absorbed. A total of six fetuses receiving different cell populations were allowed to proceed to term, and the newborn sheep were serially examined for the presence of chimerism. Again, only the two sheep receiving CD34+ Kit(low) cells exhibited signs of engraftment upon serial examination. Earlier in studies of murine hematopoiesis, we have shown stage-specific changes in Kit expression by the progenitors. The studies of human cells reported here are in agreement with observations in mice, and indicate that human hematopoietic stem cells are enriched in the Kit(low) population.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1406-1406
Author(s):  
Matthew J Boyer ◽  
Feng Xu ◽  
Hui Yu ◽  
Tao Cheng

Abstract DNA methylation is an epigenetic means of gene regulation and is carried out by a family of methyltransferases of which DNMT1 acts to maintain methylation marks following DNA replication and DNMT3a and DNMT3b methylate DNA de novo. DNMT3b has been shown to be essential for mammalian development and necessary for differentiation of germline and neural progenitor cells. Mutations of DNMT3b in humans lead to a rare autosomal recessive disorder characterized by immunodeficiency, centromeric instability, and facial abnormalities. We have shown by real-time, RT-PCR that DNMT3b mRNA is uniquely over-expressed by approximately 30-fold in immunophenotypically-defined longterm repopulating hematopoietic stem cells (HSCs) that are CD34−lineage−c-kit+Sca-1+ as compared to progenitor and differentiated cell types within the bone marrow and with respect to the other members of the DNMT family, namely DNMT1 and DNMT3a. To determine DNMT3b’s function in HSCs competitive bone marrow transplantation was undertaken. Isolated lineage− enriched bone marrow cells were transduced with a retroviral backbone based on the Murine Stem Cell Virus (MSCV) carrying either GFP and a short, hairpin RNA (shRNA) targeting DNMT3b or GFP alone. Following transduction 1×105 GFP+ cells along with 1×105 competitor cells were transplanted into 9.5 Gray irradiated congenic recipients. Two months following transplantation mice receiving bone marrow cells transduced with DNMT3b shRNA showed a significantly lower engraftment of donor cells as a percentage of total competitor cell engraftment in the peripheral blood as compared to those receiving cells transduced with GFP alone (24.8 vs 3.7, p&lt;0.05) which persisted at 3 months (22.8 vs 1.5, p&lt;0.05). Similarly, within the donor derviced cells in the peripheral blood there was a lower percentage of myeloid (CD11b+) cells at 2 and 3 months in the recipients of DNMT3b shRNA transduced cells as compared to controls. However there was no observed difference in the percentage of peripheral B (CD45R+) or T (CD3+) cells within the donor-derived cells. To determine the mechanism behind the observed engraftment defect with DNMT3b knockdown we cultured GFP+ transduced bone marrow cells in vitro with minimal cytokine support. As a control for our targeting methodology we also transduced bone marrow cells from mice harboring two floxed DNMT3b alleles with a MSCV carrying Cre recombinase and GFP. While lineage− bone marrow cells transduced with GFP alone increased 10-fold in number over two weeks of culture, cells in which DNMT3b was down regulated by shRNA or Cre-mediated recombination only doubled. Culture of lineage− bone marrow cells in methylcellulose medium by the colony-forming cell (CFC) assay revealed increases in the granulocytic and total number of colonies with DNMT3b knockdown or Cre-mediated recombination of DNMT3b similar to the increased myeloid engraftment of DNMT3b shRNA transduced cells observed 1 month following competitive bone marrow transplantation. However when 5,000 of these cells from the first CFC assay were sub-cultured there was a significant loss of colony forming ability within all lineages when DNMT3b was targeted by shRNA or Cre-mediated recombination. Taken together with the decreased engraftment of DNMT3b shRNA cells following competitive bone marrow transplantation, the observed limited proliferation in liquid culture and loss of colony forming ability during serial CFC assays is suggestive of a self-renewal defect of HSCs in the absence of DNMT3b, that was previously only reported in the absence of both DNMT3a and DNMT3b. Further elucidation of this proposed self-renewal defect is being undertaken and results of ongoing studies including long-term culture initiating cell (LTC-IC) assays and identification of genomic sites of DNA methylation within different hematopoietic subsets will also be presented.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 859-859 ◽  
Author(s):  
Chen Zhao ◽  
Yan Xiu ◽  
John M Ashton ◽  
Lianping Xing ◽  
Yoshikazu Morita ◽  
...  

Abstract Abstract 859 RelB and NF-kB2 are the main effectors of NF-kB non-canonical signaling and play critical roles in many physiological processes. However, their role in hematopoietic stem/progenitor cell (HSPC) maintenance has not been characterized. To investigate this, we generated RelB/NF-kB2 double-knockout (dKO) mice and found that dKO HSPCs have profoundly impaired engraftment and self-renewal activity after transplantation into wild-type recipients. Transplantation of wild-type bone marrow cells into dKO mice to assess the role of the dKO microenvironment showed that wild-type HSPCs cycled more rapidly, were more abundant, and had developmental aberrancies: increased myeloid and decreased lymphoid lineages, similar to dKO HSPCs. Notably, when these wild-type cells were returned to normal hosts, these phenotypic changes were reversed, indicating a potent but transient phenotype conferred by the dKO microenvironment. However, dKO bone marrow stromal cell numbers were reduced, and bone-lining niche cells supported less HSPC expansion than controls. Further, increased dKO HSPC proliferation was associated with impaired expression of niche adhesion molecules by bone-lining cells and increased inflammatory cytokine expression by bone marrow cells. Thus, RelB/NF-kB2 signaling positively and intrinsically regulates HSPC self-renewal and maintains stromal/osteoblastic niches and negatively and extrinsically regulates HSPC expansion and lineage commitment through the marrow microenvironment. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 477-477
Author(s):  
Christopher B Cole ◽  
Angela M. Verdoni ◽  
David H Spencer ◽  
Timothy J. Ley

We previously identified recurrent mutations in the DNA methyltransferase DNMT3A in patients with acute myeloid leukemia (AML). DNMT3A and the highly homologous gene DNMT3B encode the two methyltransferases that are primarily responsible for mediating de novo methylation of specific CpG residues during differentiation. Loss of Dnmt3a in hematopoietic stem cells impairs their ability to differentiate into committed progenitors (Challen et al Nat Gen 44:23, 2011). Importantly, DNMT3A mutations are mutually exclusive of the favorable prognosis AML-initiating translocations, including the t(15;17) translocation (which creates the PML-RARA fusion gene), and translocations involving MLL. PML-RARA has been shown to interact with DNMT3A in vitro (Di Croce et al Science 295:1079,2002), and to require DNMT3A to induce methylation and transcriptional silencing of a subset of specific target genes. These findings, and the lack of DNMT3A mutations in APL patients, suggest that PML-RARA may require functional DNMT3A to initiate leukemia. To investigate this possibility, we utilized a well-characterized transgenic mouse model (in a pure B6 background) in which expression of PML-RARA is driven in hematopoietic stem/progenitor cells by the mouse Cathepsin G locus (Ctsg-PML-RARA+/- mice). These mice spontaneously develop acute promyelocytic leukemia (APL) with high penetrance and long latency, and also exhibit a preleukemic phenotype marked by the accumulation of myeloid cells in bone marrow and spleen. In addition, myeloid progenitor cells derived from these mice have the ability to serially replate in methylcellulose cultures, demonstrating aberrant self-renewal. We generated Ctsg-PML-RARA+/- mice lacking Dnmt3a (PML-RARA+/- x Dnmt3a-/-) as well as mice in which conditional ablation of Dnmt3b in hematopoietic cells is driven by Vav-Cre (PML-RARA+/- x Dnmt3b fl/fl x Vav-Cre+). Loss of Dnmt3a completely abrogated the ex vivo replating ability of PML-RARA bone marrow (Figure 1). Although colonies from both PML-RARA+/- and PML-RARA+/- x Dnmt3a-/- mice appeared similar in morphology and number on the first plating, PML-RARA+/- x Dnmt3a-/- marrow ceased to form colonies with subsequent replating (see Figure), and cultured cells lost the expression of the myeloid marker CD11b. The same phenotype was also observed using bone marrow from both genotypes that was secondarily transplanted into wild type recipients, indicating that it is intrinsic to transplantable hematopoietic progenitors. Reintroduction of DNMT3A into bone marrow cells derived from PML-RARA+/- x Dnmt3a-/- mice with retroviral transduction restored replating ability and CD11b expression. Competitive repopulation experiments with PML-RARA+/- x Dnmt3a-/- marrow revealed a decreased contribution to peripheral lymphoid and myeloid cells at 4 weeks, relative to PML-RARA+/- or WT control animals. Finally, 12 weeks after transplantation, recipients of PML-RARA+/- x Dnmt3a-/- bone marrow did not display an accumulation of myeloid cells in the bone marrow and spleen. Importantly, bone marrow from PML-RARA+/- x Dnmt3b fl/fl x Vav-Cre+/- mice displayed no replating deficit or loss of CD11b expression ex vivo, indicating different functions for Dnmt3a versus Dnmt3b in this model. Finally, we interrogated the effect of Dnmt3a loss on bone marrow DNA methylation patterns using a liquid phase DNA capture technique that sampled ∼1.9 million mouse CpGs at >10x coverage. Loss of Dnmt3a caused a widespread loss of DNA methylation in whole bone marrow cells, with 36,000 CpGs that were highly methylated (methylation value >0.7) in the PML-RARA+/- and WT mice, but hypomethylated (methylation value <0.4) in Dnmt3a-/- and PML-RARA+/- x Dnmt3a-/- mice. Characterization of the effect of Dnmt3a loss on leukemia latency, penetrance, and phenotype in PML-RARA+/- mice is currently being defined in a tumor watch. In summary, we have demonstrated that PML-RARA requires functional Dnmt3a (but not Dnmt3b) to drive aberrant self-renewal of myeloid progenitors ex vivo, and that loss of Dnmt3a leads to widespread DNA hypomethylation in bone marrow cells, and abrogates preleukemic changes in mice expressing PML-RARA. This data may explain why DNMT3A mutations are not found in patients with APL initiated by PML-RARA. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2271-2271
Author(s):  
Michael Nemeth ◽  
David Bodine

Abstract Activation of the canonical Wnt signaling pathway by Wnt3a has been implicated in hematopoietic stem cell (HSC) self-renewal (Reya et al., Nature, 2003). Wnt5a has been observed to inhibit Wnt3a signaling (Topol et al., J Cell Biol, 2004). We hypothesized that Wnt3a and 5a act as antagonists on HSC function. 1 x 106 lineage negative cells (lin−) were cultured for 4 days in the presence of 50 ng/ml SCF and Flt3L (control) plus 100 ng/ml rmWnt3a and/or 500 ng/ml rmWnt5a (all factors added on day 0 and day 2). Control lin− cell numbers expanded more than lin− cells cultured with Wnt3a, 5a, or both (control 8.3 ± 0.3-fold; Wnt3a 6.9 ± 0.2-fold (p &lt; .01); Wnt5a 4.8 ± 0.2-fold (p &lt; .001); Wnt3a and 5a 2.6 ± 0.6-fold (p &lt; .001); n = 3). After 4 days, cells were analyzed for myeloid colony formation. Control cells and cells cultured in Wnt3a had similar numbers of CFU-GM/5000 lin− cells (control 13.1 ± 11.1; Wnt3a 21.8 ± 15.3; p = .21; n = 8), while cells cultured in Wnt5a and Wnt3a and 5a had 2-fold and 5.9-fold more CFU-GM/5000 lin− cells than control (Wnt 5a 26.8 ± 13.3 (p = .04); Wnt3a and 5a 77.9 ± 48.3 (p &lt; .01); n = 8). To analyze repopulating ability, 4 x 105 lin− Ly5.1 cells, cultured under the same conditions, were transplanted with 2 x 106 Ly5.2 bone marrow cells into lethally-irradiated Ly5.2 recipients. 16 weeks after transplant, repopulation by control lin− cells increased 2-fold compared to lin− cells cultured in Wnt3a or Wnt5a (control 7.3 ± 3.8%; Wnt3a 3.37 ± 1.2% (p &lt; .01); Wnt5a 3.6 ± 1.1% (p &lt; .01); n = 9-10). However, lin− cells cultured in Wnt3a and 5a showed normal repopulating activity (n = 10; 8.7 ± 5.3%; p = .52). 1 x 104 HSCs (lin−, c-kitHI, Sca-1HI, IL-7Rα −) were cultured for 6 days with SCF, Flt3L, Wnt3a and 5a (factors added on day 0 and day 3) as described above. Control HSC numbers expanded more than HSCs cultured with Wnt3a, Wnt 5a, or both (control 20.7 ± 10.4-fold; Wnt 3a 7.0 ± 4.1-fold (p = .05); Wnt5a 1.7 ± 1.7-fold (p = .01); Wnt3a and 5a 1.2 ± 1.0-fold (p &lt; .01); n = 4). Similar numbers of control HSCs and HSCs cultured with Wnt3a or 5a were lin+ (control 21.7 ± 0.2%; Wnt 3a 15.4 ± 5.3% (p = .10); Wnt5a 14.4 ± 5.2% (p = .07); n = 3). However, culturing HSCs with Wnt3a and 5a resulted in a 50% decrease in the number of lin+ cells compared to control (12.3 ± 2.0% (p = .001)). Cultured Ly5.1 HSCs were transplanted with Ly5.2 bone marrow cells at a 1:100 ratio. There was no difference in repopulation between control HSCs and HSCs cultured with Wnt3a (control 5.8 ± 6.1%; Wnt3a 3.6 ± 0.4%; p = .43; n = 5). To examine the effects of enforced expression of Wnt ligands in HSCs, 5-FU treated bone marrow was transduced with Wnt3a-IRES-GFP, Wnt5a-IRES-dsRED, or IRES-GFP retroviral vectors. Sorted IRES-GFP+, Wnt3a-GFP+ and Wnt5a-dsRed+ cells (Ly5.1) were transplanted with equal numbers of mock-transduced cells and 3 x 105 Sca-1− bone marrow cells (Ly5.2) into lethally-irradiated Ly5.2 mice. 16 weeks later, recipients of IRES-GFP+ and Wnt5a-dsRed+ cells contained a similar number of engrafted cells expressing the vector (3.4 ± 1.8% GFP+ Ly5.1 and 3.5 ± 0.4% dsRed+ Ly5.1 respectively; n = 8). In contrast, no GFP+ Ly5.1 cells were detected in Wnt3a-GFP+ recipients (n = 8). 33.4 ± 3.7% of bone marrow cells were Ly5.1+ indicating successful engraftment and retroviral DNA was detected by PCR, suggesting that transduction had occurred but that only cells in which the vector was silenced survived. We conclude that activation of the canonical Wnt pathway in HSCs promotes differentiation of primitive hematopoietic cells and that other signals, such as Wnt5a, are required to maintain the balance between HSC differentiation and self-renewal.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 472-472
Author(s):  
Yue Si ◽  
Chia-Lin Tsou ◽  
Israel Charo

Abstract Hematopoietic stem cells (HSCs) are bone-marrow derived, self-renewing pluripotent cells that give rise to terminally differentiated circulating blood cells. HSCs have been implicated in parenchymal tissue repair in the setting of inflammation. In response to the antagonist of the chemokine receptor CXCR4, HSCs and their progenitors migrate from bone marrow to the blood. However, little is known about the signals that mediate their trafficking from the blood into peripheral tissues. Recently, we showed that mice genetically deficient in chemokine receptor CCR2 (CCR2−/− mice) have a marked decrease in the number of circulating “inflammatory” (7/4+, Ly6c+) monocytes, but no decrease in myeloid progenitor cells in the bone marrow (Tsou et al, J Clin Invest, 2007, 902). These data indicated that although CCR2 is not necessary for HSCs to differentiate into mature monocytes, it does play a role in monocyte egress from bone marrow to blood. In the current study, we extend this work and investigate the expression of CCR2 on HSCs, and tested the hypothesis that CCR2 is critical for the recruitment of circulating HSCs to sites of inflammation. We found that CCR2 was expressed on subsets of primitive HSCs and myeloid progenitors and mediated HSC movement in response to inflammation. Using traditional transwell chambers, we found that c-Kit+Lin− cells derived from bone marrow underwent chemotaxis in response to the CCR2 ligands MCP-1 (CCL2) and MCP- 3 (CCL7). To determine whether CCR2 mediates HSC movement in vivo, we treated wildtype mice with thioglycollate to induce aseptic inflammation. HSCs were actively recruited to the peritoneum, as shown by fluorescence-activated cell sorting and functional colony formation assays. In contrast, this response was profoundly impaired in CCR2−/− mice. To determine whether the clonogenic cells recruited to peritoneum were true HSCs, we performed competitive transplantation assays. Thioglycollate was instilled into wildtype CD45.2+ mice, and peritoneal Lin− cells were collected, purified, and infused, together with CD45.1+ bone marrow cells, into lethally irradiated CD45.1+ mice. Four months later, up to 12% of the leukocytes in the peripheral blood of these primary recipient mice were CD45.2+. At the time of sacrifice, bone marrow cells were collected from these mice and injected into lethally irradiated secondary CD45.1+ recipient mice. Two months following the transplantation, up to 9% of the blood leukocytes in these secondary recipient mice were CD45.2+, confirming that long-term repopulating HSCs were recruited to the inflamed peritoneum of the donor mice. These findings suggest a novel role for CCR2 in the recruitment of long-term repopulating HSCs to sites of inflammation and injury. We are currently investigating whether recruited HSCs and their progenitors hasten the resolution of the inflammatory response or promote the repair of injured tissue.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 307-307
Author(s):  
Sarah C Nabinger ◽  
Michihiro Kobayashi ◽  
Rui Gao ◽  
Sisi Chen ◽  
Chonghua Yao ◽  
...  

Abstract AML is thought to arise from leukemia stem cells (LSCs); however, recent evidence suggests that the transforming events may initially give rise to pre-leukemic hematopoietic stem cells (pre-leukemic HSCs), preceding the formation of fully transformed LSCs. Pre-leukemic HSCs have been shown to contribute to normal blood development and harbor a selective growth advantage compared to normal HSCs. Pre-leukemic HSCs can acquire subsequent mutations, and once differentiation capacity is impaired, leukemia emerges. Recently, acquired somatic TP53 mutations, including p53R248W and p53R273H, were identified in healthy individuals as well as AML patients, suggesting that TP53 mutations may be early events in the pathogenesis of AML. We found that p53R248W HSCs showed a multi-lineage repopulation advantage over WT HSCs in transplantation experiments, demonstrating that mutant p53 confers a pre-leukemic phenotype in murine HSCs. Although TP53 mutations are limited in AML, TP53 mutations do co-exist with mutations of epigenetic regulator, ASXL-1, or receptor tyrosine kinase, FLT3, in AML. Mutations in Asxl-1 are present in ~10-30% of patients with myeloid malignancies and confer poor prognosis. Loss of Asxl-1 in the hematopoietic compartment leads to a myelodysplastic-like syndrome in mice and reduced stem cell self-renewal. Internal tandem duplications in Flt3 (Flt3-ITD) occur in ~30% of AML patients and are associated with adverse clinical outcome. Flt3-ITD-positive mice develop a myeloproliferative neoplasm (MPN) and HSCs expressing Flt3-ITD have decreased self-renewal capabilities. We hypothesize that mutant p53 drives the development of pre-leukemic HSCs with enhanced self-renewal capability, allowing clonal expansion and subsequent acquisition of Asxl-1 or Flt3 mutations leading to the formation of fully transformed leukemia stem cells. To define the role of mutant p53 in Asxl-1+/- HSCs, we generated p53R248W/+ Asxl-1+/- mice and performed in vitro serial replating assays as well as in vivo competitivebone marrow transplantation experiments. We found that p53R248W significantly enhanced the serial replating ability of Asxl-1-deficient bone marrow cells. Interestingly, while bone marrow from Asxl-1+/- mice had very poor engraftment compared to wild type bone marrow cells 16 weeks post-transplantation, the expression of p53R248W in Asxl-1+/- bone marrow rescued the defect. To examine the role of mutant p53 in Flt3-ITD-positive HSCs, we generated p53R248W/+ Flt3ITD/+ mice. We found that p53R248W enhanced the replating ability of Flt3ITD/+ bone marrow cells. Despite the fact that Flt3ITD/+ bone marrow cells displayed decreased repopulating ability compared to wild type cells 16 weeks post-transplant, expression of p53R248W in Flt3ITD/+ cells rescued the defect. We are monitoring leukemia development in primary and secondary transplant recipients as well as in de novo p53R248W/+ Asxl-1+/- and p53R248W/+ Flt3ITD/+ animals and predict that mutant p53 may cooperate with Asxl-1 deficiency or Flt3-ITD in the formation of LSCs to accelerate leukemia development in Asxl-1 deficient or Flt-ITD-positive neoplasms. Mechanistically, dysregulated epigenetic control underlies the pathogenesis of AML and we discovered that mutant p53 regulates epigenetic regulators, including Ezh1, Ezh2, Kdm2a, and Setd2, in HSCs. H3K27me3 is catalyzed by EZH1 or EZH2 of the Polycomb repressing complex 2 (PRC2). Both Ezh1 and Ezh2 are important for HSC self-renewal. SETD2 is a histone H3K36 methyltransferase and mutations in SETD2 have been identified in 6% of patients with AML. SETD2 deficiency resulted in a global loss of H3K36me3 and increased self-renewal capability of leukemia stem cells. We found that there were increased levels of H3K27me3 and decreased levels of H3K36me3 in p53R248W/+ HSCs compared to that of the WT HSCs. In ChIP experiments, we found that p53R248W, but not WT p53, was associated with the promoter region of Ezh2 in mouse myeloid progenitor cells, suggesting that p53R248W may directly activate Ezh2 expression in hematopoietic cells. Given that Asxl-1 has been shown to regulate H3K27me3 in HSCs, the synergy between mutant p53 and Asxl-1 deficiency on LSC self-renewal could be due to changes in histone modifications. Overall, we demonstrate that mutant p53 promotes the development of pre-leukemic HSCs by a novel mechanism involving dysregulation of the epigenetic pathways. Disclosures No relevant conflicts of interest to declare.


1992 ◽  
Vol 175 (1) ◽  
pp. 175-184 ◽  
Author(s):  
N Uchida ◽  
I L Weissman

Hematopoietic stem cells (HSCs) are defined in mice by three activities: they must rescue lethally irradiated mice (radioprotection), they must self-renew, and they must restore all blood cell lineages permanently. We initially demonstrated that HSCs were contained in a rare (approximately 0.05%) subset of bone marrow cells with the following surface marker profile: Thy-1.1lo Lin- Sca-1+. These cells were capable of long-term, multi-lineage reconstitution and radioprotection of lethally irradiated mice with an enrichment that mirrors their representation in bone marrow, namely, 1,000-2,000-fold. However, the experiments reported did not exclude the possibility that stem cell activity may also reside in populations that are Thy-1.1-, Sca-1-, or Lin+. In this article stem cell activity was determined by measuring: (a) radioprotection provided by sorted cells; (b) long-term, multi-lineage reconstitution of these surviving mice; and (c) long-term, multi-lineage reconstitution by donor cells when radioprotection is provided by coinjection of congenic host bone marrow cells. Here we demonstrate that HSC activity was detected in Thy-1.1+, Sca-1+, and Lin- fractions, but not Thy-1.1-, Sca-1-, or Lin+ bone marrow cells. We conclude that Thy-1.1lo Lin- Sca-1+ cells comprise the only adult C57BL/Ka-Thy-1.1 mouse bone marrow subset that contains pluripotent HSCs.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1471-1471
Author(s):  
Munetada Haruyama ◽  
Kozo Yamaichi ◽  
Akira Niwa ◽  
Megumu K Saito ◽  
Tatsutoshi Nakahata

Abstract Ex vivo expansion of hematopoietic stem cells (HSCs) is an attractive therapeutic strategy for many hematologic diseases and genetic disorders. Therefore, a variety of ex vivo expansion techniques have been developed, however these systems were not well done to get long term HSCs (LT-HSCs) which have a long term hematopoietic reconstitution ability. As the reasons, it is considered that the factors associating with the proliferation and self-renewal of LT-HSCs have not been clear yet. To obtain the factors to stimulate the proliferation and self-renewal of LT-HSCs, various conditioned media were evaluated. The supernatants of COS-1 cells transfected with cDNA cording for RelA (one of nuclear factor kappa B subunits) stimulated the proliferation of human CD34+ cells derived from umbilical cord blood (UCB) and increased the number of CFU-Mix strongest of all evaluated conditioned media. 60 liters of the supernatants of COS-1 cells transfected RelA genes were separated by column chromatography purifications. LC-MS/MS analysis of the final active fraction provided the information of hepatoma-derived growth factor (HDGF) as a growth factor. HDGF is a 24kD heparin-binding protein and has reported to stimulate the proliferation in various types of cells including fibroblasts, endothelial cells and hepatoma cells, its receptor(s) and signaling remain unclear, moreover, has no known function in hematopoiesis. The recombinant human HDGF indicated the ability to enhance the proliferation of CD34+ cells dose-dependently and increased the number of CFU-Mix in combination with cytokines compared to cytokines alone, especially HDGF showed the strongest synergy effect in a combination with TPO in all combinations of cytokines. Next, uncultured (UC) CD34+ cells, the cells of an equal initial number of CD34+ cells after the serum-free condition cultures in the presence of TPO alone (T), HDGF alone (H) and HDGF+TPO (HT) were transplanted into sublethally irradiated NOG (NOD/Shi-scid,IL-2RγKO) mice. HT increased the number of CD34+CD38- cells compared to UC, T and H. Analysis of CD34+CD38- cells in bone marrow cells of NOG mice 24 weeks after transplantation revealed that the mean of absolute number of CD34+CD38- cells in HT group showed about 4-fold, that in H group showed about 3-fold compared to that in UC group, however, that in T group were not detected.These results indicated that HT increased HSCs including short term and long term HSCs. In order to investigate whether HDGF could increase the number of LT-HSCs, serial transplantation experiment was carried out. Uncultured CD34+ cells and the CD34+ cells cultured with HT were transplanted into sublethally irradiated NOG mice. At 24 weeks after transplantation, the mean of absolute number of CD34+CD38- cells in HT group showed 6-fold compared to that in UC group, a half of total number of bone marrow cells from each mouse in both groups were transplanted into one secondary sublethally irradiated NOG mouse. Analysis of human hematopoietic cells in both group 20 weeks after transplantation revealed that multi-lineage human hematopoietic cells, such as CD3+ cells, CD19+ cells, CD33+ cells, CD235a+ cells, erythrocytes and platelets, were detected in all mice in HT group, but were not detected in all mice in UC group. The mean of absolute number of CD34+CD38- cells in bone marrow of HT group showed 30-fold compared to that of UC group. These results indicated that HDGF could increase the number of LT-HSCs. We showed here that the CD34+ cells cultured with HDGF can be transplanted to secondary hosts to give rise to long-term multilineage repopulation. Thus, HDGF is a novel factor to promote the proliferation of HSCs and plays an important role in hematopoiesis. HDGF will contribute the new HSCs expansion system development by using UCB for hematopoietic stem cell transplantation. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document