Activating FLT3 Mutations in CD4+/CD8− Pediatric T-Cell Acute Lymphoblastic Leukemias.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1465-1465
Author(s):  
Pieter Van Vlierberghe ◽  
Jules P.P. Meijerink ◽  
Ronald W. Stam ◽  
Wendy van der Smissen ◽  
Elisabeth R. van Wering ◽  
...  

Abstract Activating mutations in the FMS-like tyrosine kinase 3 gene (FLT3) are the most common genetic aberration in acute myeloid leukemia (AML). Internal tandem duplications (ITD) in the juxtamembrane (JM) domain, or point mutations (PM) in the activation loop of the tyrosine kinase domain lead to a constitutive activated state of the FLT3 tyrosine kinase. Recently, FLT3 mutations were identified in a cohort of 69 adult T-ALL patients, showing that this genetic abnormality is not only restricted to myeloid leukemias. To validate the incidence of FLT3 mutations in pediatric T-ALL and investigate its relation to outcome and other clinical and immunophenotypical parameters, we screened 72 diagnostic pediatric T-ALL samples. FLT3/ITD mutations were identified in 2/72 pediatric T-ALLs (2.7%), whereas 0/72 showed point mutations in the kinase domain. Immunophenotypic analysis revealed a similar profile for both FLT3 mutated patient samples, i.e. TdT+, CD2+, CD5+, CD7+, CD4+/CD8−, cytoplasmic CD3+, surface CD3− and CD10−. Although representing early T-cell differentiation stages for both patient samples, these cases seem to have a more advanced immunophenotype compared to the FLT3 mutated adult T-ALL cases, previously described (CD34+, CD4−/CD8−). Both FLT3 mutated patients showed high level LYL1 and LMO2 expression. In addition, both pediatric samples contained a HOX11L2 translocation, which was not present in the FLT3 mutated adult T-ALL cases. The first FLT3 mutated patient suffered a relapse 13 months after initial diagnosis, whereas the other is still in continued complete remission for 61+ months. Interestingly, the relapse material showed no FLT3/ITD mutation, indicating that the FLT3 mutated T-ALL subclone seems to be effectively eradicated by current chemotherapy. These data suggest that the application of FLT3 inhibitors for FLT3-mutated T-ALLs, as recently suggested in literature, may not further improve treatment outcome in pediatric T-ALL.

Blood ◽  
2012 ◽  
Vol 119 (17) ◽  
pp. 4026-4033 ◽  
Author(s):  
Hannes Leischner ◽  
Corinna Albers ◽  
Rebekka Grundler ◽  
Elena Razumovskaya ◽  
Karsten Spiekermann ◽  
...  

Abstract Mutations of Fms-like tyrosine kinase 3 (FLT3) are among the most frequently detected molecular abnormalities in AML patients. Internal tandem duplications (ITDs) are found in approximately 25% and point mutations within the second tyrosine kinase domain (TKD) in approximately 7% of AML patients. Patients carrying the FLT3-ITD but not the FLT3-TKD mutation have a significantly worse prognosis. Therefore, both FLT3 mutations seem to exert different biologic functions. FLT3-ITD but not FLT3-TKD has been shown to induce robust activation of the STAT5 signaling pathway. In the present study, we investigated the mechanisms leading to differential STAT5 activation and show that FLT3-ITD but not FLT3-TKD uses SRC to activate STAT5. Coimmunoprecipitation and pull-down experiments revealed an exclusive interaction between SRC but not other Src family kinases and FLT3-ITD, which is mediated by the SRC SH2 domain. We identified tyrosines 589 and 591 of FLT3-ITD to be essential for SRC binding and subsequent STAT5 activation. Using site-specific Abs, we found that both residues were significantly more strongly phosphorylated in FLT3-ITD compared with FLT3-TKD. SRC inhibition and knock-down blocked STAT5 activation and proliferation induced by FLT3-ITD but not by FLT3-TKD. We conclude that SRC might be a therapeutic target in FLT3-ITD+ AML.


Blood ◽  
2005 ◽  
Vol 106 (1) ◽  
pp. 265-273 ◽  
Author(s):  
Chunaram Choudhary ◽  
Joachim Schwäble ◽  
Christian Brandts ◽  
Lara Tickenbrock ◽  
Bülent Sargin ◽  
...  

Activating mutations of Flt3 are found in approximately one third of patients with acute myeloid leukemia (AML) and are an attractive drug target. Two classes of Flt3 mutations occur: internal tandem duplications (ITDs) in the juxtamembrane and point mutations in the tyrosine kinase domain (TKD). We and others have shown that Flt3-ITD induced aberrant signaling including strong activation of signal transducer and activator of transcription 5 (STAT5) and repression of CCAAT/estradiol-binding protein α (c/EBPα) and Pu.1. Here, we compared the signaling properties of Flt3-ITD versus Flt3-TKD in myeloid progenitor cells. We demonstrate that Flt3-TKD mutations induced autonomous growth of 32D cells in suspension cultures. However, in contrast to Flt3-ITD and similar to wild-type Flt3 (Flt3-WT), Flt3-TKD cannot support colony formation in semisolid media. Also, in contrast to Flt3-ITD, neither Flt3-WT nor Flt3-TKD induced activation or induction of STAT5 target genes. Flt3-TKD also failed to repress c/EBPα and Pu.1. No significant differences were observed in receptor autophosphorylation and the phosphorylation of Erk-1 and -2, Akt, and Shc. Importantly, TKD but not ITD mutations were a log power more sensitive toward the tyrosine kinase inhibitor protein kinase C 412 (PKC412) than Flt3-WT. In conclusion, Flt3-ITD and Flt3-TKD mutations display differences in their signaling properties that could have important implications for their transforming capacity and for the design of mutation-specific therapeutic approaches.


Blood ◽  
2006 ◽  
Vol 107 (9) ◽  
pp. 3700-3707 ◽  
Author(s):  
Carola Reindl ◽  
Ksenia Bagrintseva ◽  
Sridhar Vempati ◽  
Susanne Schnittger ◽  
Joachim W. Ellwart ◽  
...  

In acute myeloid leukemia (AML), two clusters of activating mutations are known in the FMS-like tyrosine kinase-3 (FLT3) gene: FLT3-internal tandem duplications (FLT3-ITDs) in the juxtamembrane (JM) domain in 20% to 25% of patients, and FLT3 point mutations in the tyrosine-kinase domain (FLT3-TKD) in 7% to 10% of patients, respectively. Here, we have characterized a new class of activating point mutations (PMs) that cluster in a 16-amino acid stretch of the juxtamembrane domain of FLT3 (FLT3-JM-PMs). Expression of 4 FLT3-JM-PMs in interleukin-3 (IL-3)-dependent Ba/F3 cells led to factor-independent growth, hyperresponsiveness to FLT3 ligand, and resistance to apoptotic cell death. FLT3-JM-PM receptors were autophosphorylated and showed a higher constitutive dimerization rate compared with the FLT3-wild-type (WT) receptor. As a molecular mechanism, we could show activation of STAT5 and up-regulation of Bcl-x(L) by all FLT3-JM-PMs. The FLT3 inhibitor PKC412 abrogated the factor-independent growth of FLT3-JM-PM-expressing cells. Compared with FLT3-ITD and FLT3-TKD mutants, the FLT3-JM-PMs showed a weaker transforming potential related to lower autophosphorylation of the receptor and its downstream target STAT5.Mapping of the FLT3-JM-PMs on the crystal structure of FLT3 showed that these mutations reduce the stability of the autoinhibitory JM domain, and provides a structural basis for the transforming capacity of this new class of gain-of-function mutations of FLT3.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4388-4388
Author(s):  
Carola Reindl ◽  
Ksenia Bagrintseva ◽  
Susanne Schnittger ◽  
Joachim W. Ellwart ◽  
Katja Wenig ◽  
...  

Abstract In acute myeloid leukemia (AML) FMS-like tyrosine kinase-3 (FLT3) has been shown to be mutated in about one third of patients. Until now, two distinct activating mutations are known: FLT3-length mutations (FLT3-LM) in the juxtamembrane (JM) domain in 20–25% and FLT3-point mutations in the tyrosine-kinase domain (FLT3-TKD) in 7–10% of patients. Here, we have characterized a new class of activating point mutations (PM) that cluster in a 16 amino acid stretch of the juxtamembrane domain of FLT3 (FLT3-JM-PM). Stable expression of four distinct FLT3-JM-PM in IL-3 dependent murine Ba/F3 cells led to factor-independent growth, hyperresponsiveness to FLT3-ligand and resistance to apoptotic cell death compared to FLT3-WT-expressing cells. As a molecular mechanism, we could show activation of STAT5 and upregulation of Bcl-x(L) by all FLT3-JM-PM. A selective FLT3-inhibitor, PKC412, was able to abrogate the factor-independent growth of FLT3-JM-PM. Mapping of the FLT3-JM-PM on the crystal structure of FLT3 showed that these mutations probably reduce the stability of the JM domain in the autoinhibitory conformation, and provide a structural basis for their transforming capacity. Our results show that point mutations in the autoinhibitory JM domain represent a new class of gain-of-function mutations able to activate the transforming potential of FLT3.


2020 ◽  
Vol 4 (3) ◽  
pp. 514-524 ◽  
Author(s):  
Theodore C. Tarver ◽  
Jason E. Hill ◽  
Leena Rahmat ◽  
Alexander E. Perl ◽  
Erkut Bahceci ◽  
...  

Abstract Gilteritinib is the first FMS-like tyrosine kinase 3 (FLT3) tyrosine kinase inhibitor (TKI) approved as monotherapy in acute myeloid leukemia with FLT3 internal tandem duplication and D835/I836 tyrosine kinase domain (TKD) mutations. Sequencing studies in patients have uncovered less common, noncanonical (NC) mutations in FLT3 and have implicated secondary TKD mutations in FLT3 TKI resistance. We report that gilteritinib is active against FLT3 NC and TKI resistance-causing mutations in vitro. A mutagenesis screen identified FLT3 F691L, Y693C/N, and G697S as mutations that confer moderate resistance to gilteritinib in vitro. Analysis of patients treated with gilteritinib revealed that 2/9 patients with preexisting NC FLT3 mutations responded and that secondary TKD mutations are acquired in a minority (5/31) of patients treated with gilteritinib. Four of 5 patients developed F691L mutations (all treated at <200 mg). These studies suggest that gilteritinib has broad activity against FLT3 mutations and limited vulnerability to resistance-causing FLT3 TKD mutations, particularly when used at higher doses.


2020 ◽  
Vol 4 (s1) ◽  
pp. 9-10
Author(s):  
Gabriela Maria Witek ◽  
Whelton Miller ◽  
David Slochower ◽  
Esther Berko ◽  
Yael Mossé ◽  
...  

OBJECTIVES/GOALS: Neuroblastoma (NB) is an embryonal cancer of the sympathetic nervous system that affects mostly infants and young children. The complex genetic background present across NB patients results in diverse clinical response and difficulty in individualizing therapy. Currently, NB patients undergo a regimen of genotoxic chemotherapeutics, radiation therapy, and new immunotherapy that, while effective, has significant side effects, including excruciating pain. One promising avenue for targeted therapy in neuroblastoma focuses on anaplastic lymphoma kinase (ALK), a cell surface neural receptor tyrosine kinase. We previously identified activating point mutations within the tyrosine kinase domain of ALK as the primary cause of hereditary NB, and we and others subsequently showed that these same alterations are the most common somatic single-nucleotide mutations in the sporadic forms of the disease. Crizotinib, a first-generation small molecule ATP-competitive inhibitor of the ALK tyrosine kinase, showed limited anti-tumor activity in patients with relapsed NB harboring ALK F1174 and F1245 mutations. We have demonstrated that lorlatinib, a novel ATP-competitive ALK inhibitor, overcomes this de novo resistance in preclinical models of ALK-driven NB. Recent clinical trials with lorlatinib in patients with non-small cell lung cancer harboring an ALK fusion, and in patients with NB harboring ALK mutations show the emergence of multiple or compound ALK mutations as a mechanism of resistance. We postulate that these compound mutations disrupt the interaction between and ALK and cause resistance. In this study, we employ a computational approach to model mutated ALK in complex with lorlatinib as well as ATP to understand whether the new mutations alter the affinity or mode of lorlatinib/ATP binding to ALK, and thus cause suboptimal ALK inhibition. METHODS/STUDY POPULATION: We employ methods in computational structural biology and drug design, primarily based on molecular modeling, molecular dynamics (MD), and molecular docking. Based on existing crystal structures of wildtype ALK, we model the mutations and perform MD simulations in order to characterize the activation state of the protein as well as perform ensemble docking calculations to assess the binding affinities and modes in ALK-lorlatinib and ALK-ATP complexes. RESULTS/ANTICIPATED RESULTS: We expect that the compound mutations cause resistance to lorlatinib either by lowering protein affinity for the drug or increasing the affinity for ATP. Alternatively, the compound mutations may disrupt the protein activation state, in which case ALK may no longer be active, and another protein/pathway could be driving the resistance. DISCUSSION/SIGNIFICANCE OF IMPACT: The results of this study will enable the understanding of the mechanism of resistance to lorlatinib and facilitate the design of new ALK inhibitors, or help develop more optimal and mechanism-guided therapies aimed to overcome the resistance.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4915-4915
Author(s):  
Andrica C.H. de Vries ◽  
Ronald W. Stam ◽  
Pauline Schneider ◽  
Charlotte M. Niemeyer ◽  
Elisabeth R. van Wering ◽  
...  

Abstract Activating FLT3 mutations have been identified as prognostic factors in multiple myeloid malignancies. Recent studies have demonstrated that ligand-independent activation of FLT3 can also result from overexpression of wild-type FLT3. In addition, ligand-dependent activation has been observed in leukemic cells co-expressing FLT3 ligand (FLT3L), resulting in autocrine FLT3 signaling which is independent of FLT3 mutations. In Juvenile Myelo-Monocytic Leukemia (JMML), FLT3 internal tandem duplications (FLT3/ITDs) mutations affecting the tyrosine kinase domain (TKD) are rare. However, no data are yet available on the frequency of expression levels of FLT3 and FLT3L in JMML. If activated FLT3 occurs in JMML, one could imagine that these patients might benefit from treatment with small molecule FLT3 inhibitors, especially as to date the curative treatment of JMML is limited to allogeneous bone marrow transplantation. In 36 JMML patients FLT3 and FLT3L mRNA levels were assessed using real-time quantitative PCR (Taqman). Furthermore these samples were screened for the presence of activating FLT3/ITDs and FLT3/TKD mutations. MTT assays were performed to assess the response of JMML cells to the known FLT3 inhibitor PKC412 (Novartis). FLT3 appeared to be expressed only at basal levels and FLT3L expression was very low. In none of the 36 JMML samples FLT3/ITDs or TDK mutations were found, consistent with the observation that PKC412 was not cytotoxic in JMML samples (n=12), in contrast to leukemic cells of children with ALL which carried an activated FLT3. These data suggest that constitutively activated FLT3 does not occur in JMML. Therefore targeting FLT3 by tyrosine kinase inhibitors like PKC412 is unlikely to be effective in JMML.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 477-477
Author(s):  
Hannes Leischner ◽  
Rebekka Grundler ◽  
Corinna Albers ◽  
Anna Lena Illert ◽  
Karsten Spiekermann ◽  
...  

Abstract Abstract 477 Activating mutations of FLT3 are frequent in patients with AML. Two types of mutations are most common: Internal tandem duplications (ITD) of the juxtamembrane domain in approximately 30% of patients and point mutations within the second tyrosine kinase domain (TKD) in about 7% of AML patients. Patients carrying the FLT3-ITD mutation have a significantly worse prognosis whereas FLT3-TKD mutations do not appear to influence the clinical outcome. Studies have shown that mice receiving a transplant of bone marrow expressing FLT3 ITD develop a myeloproliferative disease. In contrast, mice which were transplanted with FLT3 TKD infected bone marrow, suffer from a lymphoid disease. Thus, both FLT3 mutations seem to exert different biological functions. Interestingly, FLT3-ITD but not FLT3-TKD or FLT3-WT leads to a strong activation of the STAT5 signaling pathway. Therefore, STAT5 activation may be responsible for the observed differences in biology. Here we investigated the signalling pathways leading to STAT5 activation downstream of FLT3-ITD. FLT3-ITD does not bind STAT5 directly nor does it activate the classical JAK2 pathway. Instead FLT3-ITD utilizes c-Src to activate STAT5. Co-immunoprecipitations and GST pull downs revealed a strong and exclusive interaction between Src and FLT3 ITD, which is mediated by the Src-SH2 domain. This interaction is absent in FLT3-TKD or FLT3-WT after ligand stimulation. The sequence duplication in FLT3-ITD leads to additional potential Src-SH2 binding sites. We identified tyrosines 589 and 591 of FLT3-ITD to be essential for Src binding and subsequent STAT5 activation. Specific Src inhibitors or Src-siRNA blocked STAT5 activation and growth induced by FLT3-ITD but not FLT3-TKD. FLT3-ITD positive cells with a stable Src knockdown injected into syngenic mice led to a leukemic disease with a significant delayed onset and prolonged survival in comparison to the control group. Finally, a combination of FLT3 and Src inhibitors was tested. This combination was highly efficient in FLT3-ITD positive cells but not in FLT-TKD positive cells. Together these findings show that Src plays an important role in the signalling of FLT3-ITD but not FLT3-TKD. Thus, Src might be an interesting therapeutic target for FLT3-ITD positive AML. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2892-2892 ◽  
Author(s):  
Hannes Leischner ◽  
Rebekka Grundler ◽  
Corinna Albers ◽  
Anna Lena Illert ◽  
Katharina Götze ◽  
...  

Abstract Abstract 2892 Activating mutations of FLT3 are frequent in patients with AML. Two types of mutations are most common: Internal tandem duplications (ITD) of the juxtamembrane domain in approximately 30% of patients and point mutations within the second tyrosine kinase domain (TKD) in about 7% of AML patients. Patients carrying the FLT3-ITD mutation have a significantly worse prognosis whereas FLT3-TKD mutations do not appear to influence the clinical outcome. Studies have shown that mice receiving a transplant of bone marrow expressing FLT3 ITD develop a myeloproliferative disease. In contrast, mice which were transplanted with FLT3 TKD infected bone marrow, suffer from a lymphoid disease. Thus, both FLT3 mutations seem to exert different biological functions. Interestingly, FLT3-ITD but not FLT3-TKD or FLT3-WT leads to a strong activation of the STAT5 signaling pathway. Recently we have shown that c-SRC is the crucial signaling mediator of FLT3 ITD to activate STAT5. Based on these findings we investigated the effect of FLT3 inhibitors (Midostaurin, Sorafenib and Sunitinib) in combination with c-SRC inhibitors (Dasatinib and PD166-326) on FLT3 ITD and FLT3 TKD murine and human cell lines as well as on primary patient material. In FLT3 ITD expressing murine myeloid 32D cells c-SRC inhibitors in combination with FLT3 inhibitors showed clear additive effects on growth inhibition, apoptosis and activation of STAT5. In contrast, c-SRC inhibitors had no additional effects in FLT3 TKD expressing cells. Accordingly, a strong additive effect of c-SRC and FLT3 inhibitors could also be demonstrated in the FLT3 ITD positive human AML cell line MV4-11. Finally FLT3 ITD and FLT3 TKD positive primary human AML cells were investigated. We were able to detect a significant additional growth inhibition of FLT3 ITD positive human cells by combining c-SRC and FLT3 inhibitors. In contrast, no further growth inhibition was observed by c-SRC inhibition in primary AML cells expressing the FLT3 TKD mutation. Together our results confirm c-SRC as a crucial signaling mediator in FLT3-ITD but not FLT3-TKD positive AML. The combination of FLT3 and c-SRC inhibitors warrants further investigation in FLT3 ITD positive AML. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1373-1373
Author(s):  
Sandra Preuner ◽  
Renate Kastner ◽  
Agnes Zopf ◽  
Proell Johannes ◽  
Pierre Foskett ◽  
...  

Abstract Mutations in the BCR-ABL1 tyrosine kinase domain (TKD) are regarded as the most important mechanism of resistance to tyrosine kinase inhibitors (TKIs) in patients with Ph-positive leukemias. The occurrence of two or more mutations on the same DNA molecule, the so-called compound mutations, can be associated with particularly high resistance to multiple TKIs. Recent reports indicate that the frequency of compound mutations is rather high, thus rendering their reliable detection an important diagnostic challenge 1,2. Analysis of PCR amplicons of the BCR-ABL1 TKD by next generation sequencing (NGS) has become the method of choice for sensitive detection of compound mutations. This approach is, however, hampered by the requirement of 3-4 overlapping amplicons to cover the entire TKD due to the limited read length offered by most current NGS technologies. This prevents the assignment of nucleotide substitutions located on different amplicons to the same TKD/DNA molecule, and therefore requires additional laborious steps to facilitate unequivocal identification of such constellations. To overcome this limitation, we have established a long-range NGS approach on the FLX instrument (Roche) permitting the coverage of the entire TKD length of ∼0.9 kb in a single read. By testing a series of individual and consecutive specimens derived from five patients with chronic myeloid leukemia, we demonstrate that long-range NGS analysis readily permits the identification of mutations and their assignment to the same or to separate subclones at a limit of sensitivity comparable to NGS-based sequencing of shorter amplicons. In addition to the detection of individual and compound mutations, this approach also facilitates an interpretable documentation of insertions and deletions in the TKD. To address the possibility of artifacts inherent in the technique that could lead to incorrect identification of single and compound mutations, the NGS findings were reevaluated by independent technical approaches. Point mutations were confirmed by Sanger sequencing, LD-PCR 3 and pyrosequencing 4. In select cases, PCR amplicons of the BCR-ABL1 TKD derived from individual specimens were subcloned into pGEM®T easy plasmids, and >100 clones were subjected to analysis by Sanger sequencing. The observations made by NGS analysis including various single mutations (e.g. G250E, Y253H, T315A, F317I, Q252H, T315I), compound mutations (e.g. G250E/Y253H, G250E/T315A, G250E/F317I), and combinations of point mutations with small insertions or deletions (e.g. E459K/C475fs, Q252H/R362fs, T315I/R362fs) as well as large deletions involving multiple exons, could be confirmed in individual clones by Sanger sequencing, thereby documenting the reliability of the long-range NGS technology. The technical advancement presented therefore provides an economic approach to the identification of compound mutations and other genetic alterations in the entire BCR-ABL1 TKD, thus extending the diagnostic armamentarium for rapid assessment of impending resistant disease. 1. Khorashad JS, Kelley TW, Szankasi P, et al. BCR-ABL1 compound mutations in tyrosine kinase inhibitor-resistant CML: frequency and clonal relationships. Blood. 2013;121(3):489-498. 2. Soverini S, De Benedittis C, Machova Polakova K, et al. Unraveling the complexity of tyrosine kinase inhibitor-resistant populations by ultra-deep sequencing of the BCR-ABL kinase domain. Blood. 2013. 3. Preuner S, Denk D, Frommlet F, Nesslboeck M, Lion T. Quantitative monitoring of cell clones carrying point mutations in the BCR-ABL tyrosine kinase domain by ligation-dependent polymerase chain reaction (LD-PCR). Leukemia. 2008;22(10):1956-1961. 4. Alikian M, Gerrard G, Subramanian PG, et al. BCR-ABL1 kinase domain mutations: methodology and clinical evaluation. Am J Hematol. 2012;87(3):298-304. Figure Strategy of long-range NGS analysis for the detection of single and compound mutations, insertions and deletions in the BCR-ABL1 TKD. Figure. Strategy of long-range NGS analysis for the detection of single and compound mutations, insertions and deletions in the BCR-ABL1 TKD. Disclosures: Valent: Novartis: Honoraria, Research Funding. Lion:Novartis, Bristol-Myers- Squibb, Pfizer: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document