amino acid stretch
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 16)

H-INDEX

18
(FIVE YEARS 2)

Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1854
Author(s):  
Federico M. Ruiz ◽  
Francisco J. Medrano ◽  
Anna-Kristin Ludwig ◽  
Herbert Kaltner ◽  
Nadezhda V. Shilova ◽  
...  

Galectins are multi-purpose effectors acting via interactions with distinct counterreceptors based on protein-glycan/protein recognition. These processes are emerging to involve several regions on the protein so that the availability of a detailed structural characterization of a full-length galectin is essential. We report here the first crystallographic information on the N-terminal extension of the carbohydrate recognition domain of rat galectin-5, which is precisely described as an N-tailed proto-type-like galectin. In the ligand-free protein, the three amino-acid stretch from Ser2 to Ser5 is revealed to form an extra β-strand (F0), and the residues from Thr6 to Asn12 are part of a loop protruding from strands S1 and F0. In the ligand-bound structure, amino acids Ser2–Tyr10 switch position and are aligned to the edge of the β-sandwich. Interestingly, the signal profile in our glycan array screening shows the sugar-binding site to preferentially accommodate the histo-blood-group B (type 2) tetrasaccharide and N-acetyllactosamine-based di- and oligomers. The crystal structures revealed the characteristically preformed structural organization around the central Trp77 of the CRD with involvement of the sequence signature’s amino acids in binding. Ligand binding was also characterized calorimetrically. The presented data shows that the N-terminal extension can adopt an ordered structure and shapes the hypothesis that a ligand-induced shift in the equilibrium between flexible and ordered conformers potentially acts as a molecular switch, enabling new contacts in this region.


Author(s):  
Marcela Soledad Bertolio ◽  
Anabela La Colla ◽  
Alejandra Carrea ◽  
Ana Romo ◽  
Gabriela Canziani ◽  
...  

We describe, for the first time, a new splice variant of the human TGF-β type II receptor (TβRII). The new transcript lacks 149 nucleotides, resulting in a frameshift and the emergence of an early stop codon, rendering a truncated mature protein of 57 amino acids. The predicted protein, lacking the transmembrane domain and with a distinctive 13-amino-acid stretch at its C-terminus, was named TβRII-Soluble Endogenous (TβRII-SE). Binding predictions indicate that the novel 13-amino-acid stretch interacts with all three TGF-β cognate ligands and generates a more extensive protein–protein interface than TβRII. TβRII-SE and human IgG1 Fc domain were fused in frame in a lentiviral vector (Lv) for further characterization. With this vector, we transduced 293T cells and purified TβRII-SE/Fc by A/G protein chromatography from conditioned medium. Immunoblotting revealed homogeneous bands of approximately 37 kDa (reduced) and 75 kDa (non-reduced), indicating that TβRII-SE/Fc is secreted as a disulfide-linked homodimer. Moreover, high-affinity binding of TβRII-SE to the three TGF-β isoforms was confirmed by surface plasmon resonance (SPR) analysis. Also, intrahepatic delivery of Lv.TβRII-SE/Fc in a carbon tetrachloride-induced liver fibrosis model revealed amelioration of liver injury and fibrosis. Our results indicate that TβRII-SE is a novel member of the TGF-β signaling pathway with distinctive characteristics. This novel protein offers an alternative for the prevention and treatment of pathologies caused by the overproduction of TGF-β ligands.


2021 ◽  
Author(s):  
Sheikh Tahir Majeed ◽  
Rabiya Majeed ◽  
Muhammad Afzal Zargar ◽  
Khurshid Iqbal Andrabi

Ribosomal protein S6 kinase (S6K1), a major downstream effector molecule of mTORC1, regulates cell growth and proliferation via modulating protein translation and ribosomal biogenesis. We have previously identified eIF4E as an intermediate in transducing signals from mTORC1 to S6K1 and further demonstrated that the role of mTORC1 is restricted to relieving S6K1 auto-inhibition to allow hydrophobic motif (HM) phosphorylation of the enzyme for activation. These observations rule out the role of mTORC1 as an HM kinase of S6K1 and point towards the involvement of mTORC1 independent kinase in mediating HM phosphorylation. Here, we report mTORC2 as an in-vivo HM kinase of S6K1. We show that S6K1 truncation mutant, incapacitated to respond to mTORC1 signals, continues to display HM phosphorylation which remains sensitive towards mTOR kinase inhibitor-torin 1. Furthermore, we identify a highly conserved amino acid stretch in S6K1 responsible for mediating HM phosphorylation. We show that deletion of this stretch leads to HM dephosphorylation and subsequent in activation of the enzyme. We, therefore, propose a novel mechanism for S6K1 regulation where mTOR complex 1 and 2 act in tandem to activate the enzyme.


2021 ◽  
Vol 9 (8) ◽  
pp. 1756
Author(s):  
Alisa Strohmayer ◽  
Timothy Schwarz ◽  
Mario Braun ◽  
Gabi Krczal ◽  
Kajohn Boonrod

SAP11 is an effector protein that has been identified in various phytoplasma species. It localizes in the plant nucleus and can bind and destabilize TEOSINE BRANCHES/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factors. Although SAP11 of different phytoplasma species share similar activities, their protein sequences differ greatly. Here, we demonstrate that the SAP11-like protein of ‘Candidatus Phytoplasma mali’ (‘Ca. P. mali’) strain PM19 localizes into the plant nucleus without requiring the anticipated nuclear localization sequence (NLS). We show that the protein induces crinkled leaves and siliques, and witches’ broom symptoms, in transgenic Arabidopsis thaliana (A. thaliana) plants and binds to six members of class I and all members of class II TCP transcription factors of A. thaliana in yeast two-hybrid assays. We also identified a 17 amino acid stretch previously predicted to be a nuclear localization sequence that is important for the binding of some of the TCPs, which results in a crinkled leaf and silique phenotype in transgenic A. thaliana. Moreover, we provide evidence that the SAP11-like protein has a destabilizing effect on some TCPs in vivo.


2021 ◽  
Author(s):  
Marcela Soledad Bertolio ◽  
Anabela La Colla ◽  
Alejandra Carrea ◽  
Ana Romo ◽  
Gabriela Canziani ◽  
...  

AbstractWe describe, for the first time, a new splice variant of the human TGF-β type II receptor (TβRII). The new transcript lacks 149 nucleotides, causing a frameshift with the appearance of an early stop codon, rendering a truncated mature protein of 57 amino acids. The predicted protein, lacking the transmembrane domain and with a distinctive 13 amino acid stretch in the C-terminus, was named TβRII-Soluble Endogenous (TβRII-SE). Binding predictions indicated that the novel 13 amino acid stretch interacts with all three TGF-β cognate ligands and generate a more extensive protein-protein interface than TβRII. TβRII-SE and human IgG1 Fc-domain, were fused in frame in a lentiviral vector (Lv) for further characterization. With this vector, we transduced 293T cells and purified TβRII-SE/Fc by A/G protein chromatography from conditioned medium. Immunoblotting revealed homogeneous bands of approximately 37 kDa (reduced) and 75 kD (non-reduced), indicating that TβRII-SE/Fc is secreted as a disulphide-linked homodimer. Moreover, high affinity binding of TβRII-SE to the three TGF-β isoforms was confirmed by Surface Plasmon Resonance (SPR) analysis. Also, intrahepatic delivery of Lv.TβRII-SE/Fc in a carbon tetrachloride-induced liver fibrosis model revealed amelioration of liver injury and fibrosis. Our results indicate that TβRII-SE is a novel member of the TGF-β signaling pathway with distinctive characteristics. This novel protein offers an alternative tool for the prevention and treatment of pathologies caused by the overproduction of TGF-β ligands.


2020 ◽  
Author(s):  
Koel Mukherjee ◽  
Debpali Sur ◽  
Abhijeet Singh ◽  
Sandhya Rai ◽  
Neeladrisingha Das ◽  
...  

AbstractRetrotransposons are sequences which transpose within genomes using RNA as an intermediate. Long INterpersed Element-1 (LINE1 or L1) is the only active retrotransposon occupying around 17% of the human genome with an estimated 500,000 copies. An active L1 encodes two proteins (L1ORF1p and L1ORF2p); both of which are critical in the process of retrotransposition. In-order to propagate to the nextgeneration, L1s remain active in germ tissues and at an early stage of development. Surprisingly, by some unknown mechanism, L1 also shows activity in certain parts of the normal brain and many cancers. L1 activity is generally determined by assaying L1ORF1p because of its high expression and availability of the antibody. However, due to its lowerexpression and the unavailability of a robust antibody, detection of L1ORF2p has been limited. L1ORF2p is the crucial protein in the process of retrotransposition as it provides endonuclease and reverse transcriptase (RT) activity. Here, we report a novel human L1ORF2p antibody generated using an 80-amino-acid stretch from the RT domain, which is highly conserved among different species. The antibody detects significant L1ORF2p expression in murine germ tissues and human oral squamous cell carcinoma (OSCC) samples. This particular cancer is prevalent in India due to excessive use of tobacco. Here, using our in-house antibodies against L1 proteins, we show that more than fifty percent of samples are positive for L1 proteins. Overall, we reported a novel L1ORF2p antibody that detects L1 activity in germ tissues and OSCC


2020 ◽  
Vol 21 (14) ◽  
pp. 4963 ◽  
Author(s):  
Zoltán János Tolnai ◽  
Judit András ◽  
Zsuzsanna Szeitner ◽  
Krisztina Percze ◽  
László Ferenc Simon ◽  
...  

Two subunits of the ternary troponin complex, I and C, have cardiac muscle specific isoforms, and hence could be applied as highly-selective markers of acute coronary syndrome. We aimed at paving the way for the development of a robust cardiac troponin I-detecting sandwich assay by replacing antibodies with nuclease resistant aptamer analogues, so-called spiegelmers. To complement the previously generated spiegelmers that were specific for the N-terminus of cTnI, spiegelmers were selected for an amino acid stretch in the proximity of the C-terminal part of the protein by using a D-amino acid composed peptide. Following the selection, the oligonucleotides were screened by filter binding assay, and surface plasmon resonance analysis of the most auspicious candidates demonstrated that this approach could provide spiegelmers with subnanomolar dissociation constant. To demonstrate if the selected spiegelmers are functional and suitable for cTnI detection in a sandwich type arrangement, AlphaLisa technology was leveraged and the obtained results demonstrated that spiegelmers with different epitope selectivity are suitable for specific detection of cTnI protein even in human plasma containing samples. These results suggest that spiegelmers could be considered in the development of the next generation cTnI monitoring assays.


2020 ◽  
Author(s):  
Alisa Strohmayer ◽  
Timothy Schwarz ◽  
Mario Braun ◽  
Gabi Krczal ◽  
Kajohn Boonrod

AbstractThe plant pathogen ‘Candidatus Phytoplasma mali’ (‘Ca. P. mali’) is the causing agent of apple proliferation that leads to heavy damage in apple production all over Europe. To identify and analyze effector proteins of plant pathogens is an important strategy in plant disease research. Here, we report that the SAP11-like protein of ‘Ca. P. mali’ induces crinkled leaves and siliques and witches’ broom symptoms in transgenic Arabidopsis thaliana (A. thaliana) plants and binds to 6 members of class I and all members of class II TCP (TEOSINE BRANCHES/ CYCLOIDEA/PROLIFERATING CELL FACTOR) transcription factors of A. thaliana in yeast two-hybrid assays. Moreover, we demonstrate that the protein localizes actively into the plant nucleus without requiring the nuclear leader sequence (NLS). We also identified a 17 amino acid stretch previously predicted to be a nuclear leader sequence that is important for the binding of some of the TCPs and also responsible for the crinkled leaf and silique phenotype in transgenic A. thaliana.


2020 ◽  
Vol 21 (5) ◽  
pp. 1629 ◽  
Author(s):  
Thomas Näsström ◽  
Jörgen Ådén ◽  
Fumina Shibata ◽  
Per Ola Andersson ◽  
Björn C.G. Karlsson

Although Lewy bodies and Lewy neurites are hallmarks of Parkinson’s disease (PD) and dementia with Lewy bodies (DLB), misfolded α-synuclein oligomers are nowadays believed to be key for the development of these diseases. Attempts to target soluble misfolded species of the full-length protein have been limited so far, probably due to the fast aggregation kinetics and burial of aggregation prone segments in final cross-β-sheet fibrils. A previous characterisation study of fibrils prepared from a capped peptide of the non-amyloid β-component (NAC) 71–82 amino acid stretch of α-synuclein demonstrated an increased aggregation propensity resulting in a cross-β-structure that is also found in prion proteins. From this, it was suggested that capped NAC 71–82 peptide oligomers would provide interesting motifs with a capacity to regulate disease development. Here, we demonstrated, from a series of circular dichroism spectroscopic measurements and molecular dynamics simulations, the molecular-environment-sensitive behaviour of the capped NAC 71–82 peptide in a solution phase and the formation of β-sheet oligomeric structures in the supernatant of a fibrillisation mixture. These results highlighted the use of the capped NAC 71–82 peptide as a motif in the preparation of oligomeric β-sheet structures that potentially could be used in therapeutic strategies in the fight against progressive neurodegenerative disorders, such as PD and DLB.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Akiko Hori ◽  
Kenji Nishide ◽  
Yuki Yasukuni ◽  
Kei Haga ◽  
Wataru Kakuta ◽  
...  

Abstract Membrane morphology is an important structural determinant as it reflects cellular functions. The pentaspan membrane protein Prominin-1 (Prom1/CD133) is known to be localised to protrusions and plays a pivotal role in migration and the determination of cellular morphology; however, the underlying mechanism of its action have been elusive. Here, we performed molecular characterisation of Prom1, focussing primarily on its effects on cell morphology. Overexpression of Prom1 in RPE-1 cells triggers multiple, long, cholesterol-enriched fibres, independently of actin and microtubule polymerisation. A five amino acid stretch located at the carboxyl cytosolic region is essential for fibre formation. The small GTPase Rho and its downstream Rho-associated coiled-coil-containing protein kinase (ROCK) are also essential for this process, and active Rho colocalises with Prom1 at the site of initialisation of fibre formation. In mouse embryonic fibroblast (MEF) cells we show that Prom1 is required for chloride ion efflux induced by calcium ion uptake, and demonstrate that fibre formation is closely associated with chloride efflux activity. Collectively, these findings suggest that Prom1 affects cell morphology and contributes to chloride conductance.


Sign in / Sign up

Export Citation Format

Share Document