Retroviral Mediated Transfer of MLL Fusion Genes into Human CD34+ Cord Blood Cells Supports the Establishment of Long-Term Myeloid Cultures with Growth Rates, Immunophenotypic and Transcriptional Features Distinct from Those of AML1-ETO Transduced Cultures.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1610-1610
Author(s):  
Jorge F. DiMartino ◽  
Catherine Rettig ◽  
Mark Wunderlich ◽  
James C. Mulloy

Abstract Translocations involving the MLL gene, primarily t(9;11) and t(10;11) together with rearrangements affecting the core binding factor (CBF) genes, t(8;21) and inv(16) comprise the most frequent cytogenetic abnormalities in acute myeloid leukemia (AML). Although all of these rearrangements generate chimeric transcription factors (MLL-AF9, MLL-AF10, AML1-ETO and CBFβ-MYH11) clinicopathologic features and transcriptional profiles clearly distinguish MLL-rearranged from CBF-rearranged AML. To understand how these distinct subgroups of AML arise, we have developed a model for studying the effects of MLL and CBF fusion proteins on the growth, survival and differentiation human myeloid progenitors in vitro. Using retroviral mediated gene transfer, we transduced CD34 selected normal human cord blood (CB) cells with vector (MIEG3) alone or with vectors expressing MLL-AF9, MLL-AF10 or AML1-ETO fusion genes. Whereas CB transduced with MIEG3 proliferated in liquid culture for 6 to 8 weeks, MLL-AF9, MLL-AF10 and AML1-ETO transduced cells have continued to proliferate continuously in culture for more than 16 weeks without any sign of crisis. At any point after transduction, CB expressing MLL-AF9 or MLL-AF10 exhibited a faster rate of growth as compared with AML1-ETO or MIEG3 transduced CB. This difference in growth rate was associated with a reduced frequency of spontaneous apoptosis by annexin staining in the MLL cultures, as compared with the AML1-ETO cultures, but no difference in the fraction of cells in S-phase. MLL-AF9 and MLL-AF10 transduced CB also exhibited evidence of early myeloid maturation arrest based on morphology and surface antigen expression. However, while AML1-ETO transduced cells continue to express CD34 throughout their time in culture, MLL cultures lose expression of this stem cell-associated antigen and acquire expression of c-Kit and CD33, neither of which is expressed in AML1-ETO cultures. Also, unlike AML1-ETO transduced cells, CB transduced with with MLL fusions retain serial clonogenicity for 3 or more rounds of plating in methylcellulose assays. We used quantitative realtime RT-PCR to measure expression of 3 genes that are differentially expressed in patients with MLL or CBF gene fusions based on published microarray data. While expression of SPARC increased over time in MIEG3 cultures or remained stable in CB transduced with AML1-ETO, it decreased to nearly undetectable levels in MLL-AF9 transduced cultures. In contrast, expression of both BMI-1 and HOXA9 increased in the MLL-AF9 cultures and decreased in the MIEG3 and AML1-ETO cultures. The transcriptional changes in our long-term cultures mirror the gene expression differences that have been observed in AML associated with MLL or CBF fusions and suggest that this will be a useful model to study how chimeric transcription factors contribute to myeloid leukemogenesis. Interestingly, CB transduced with a mutated MLL-AF10 (MA10ΔLZ) lacking the leucine zipper domain required for transformation of primary murine myeloid progenitors did not differ, in terms of growth or differentation, from MIEG3 transduced cells. This suggests that the effects of MLL-AF9 and MLL-AF10 on normal CB may reflect early events in myeloid leukemogenesis. The in vivo leukemogenic potential of MLL fusion transduced CB is currently being evaluated in NOD/SCID mice.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2237-2237
Author(s):  
Ravindra Majeti ◽  
Christopher Y. Park ◽  
Irving L. Weissman

Abstract Mouse hematopoiesis is initiated by long-term hematopoietic stem cells (HSC) that differentiate into a series of multipotent progenitors that exhibit progressively diminished self-renewal ability. In human hematopoiesis, populations enriched for HSC have been identified, as have downstream lineage-committed progenitors, but not multipotent progenitors. Previous reports indicate that human HSC are enriched in Lin-CD34+CD38- cord blood and bone marrow, and express CD90. We demonstrate that the Lin-CD34+CD38- fraction of cord blood and bone marrow can be subdivided into three subpopulations: CD90+CD45RA-, CD90-CD45RA-, and CD90-CD45RA+. While, the function of the CD90- subpopulations is unknown, the CD90+CD45RA- subpopulation presumably contains HSC. We report here in vitro and in vivo functional studies of these three subpopulations from normal human cord blood. In vitro, CD90+CD45RA- cells formed all types of myeloid colonies in methylcellulose and were able to replate with 70% efficiency. CD90-CD45RA- cells also formed all types of myeloid colonies, but replated with only 33% efficiency. CD90-CD45RA+ cells failed to form myeloid colonies in methylcellulose. In liquid culture, CD90+CD45RA- cells gave rise to all three subpopulations; CD90-CD45RA- cells gave rise to both CD90- subpopulations, but not CD90+ cells; CD90-CD45RA+ cells gave rise to themselves only. These data establish an in vitro differentiation hierarchy from CD90+CD45RA- to CD90-CD45RA- to CD90-CD45RA+ cells among Lin-CD34+CD38- cord blood. In vivo, xenotransplantation of CD90+CD45RA- cells into NOD/SCID/IL-2R?-null newborn mice resulted in long-term multilineage engraftment with transplantation of as few as 10 purified cells. Secondary transplants from primary engrafted mice also resulted in long-term multilineage engraftment, indicating the presence of self-renewing HSC. Transplantation of CD90-CD45RA- cells also resulted in long-term multilineage engraftment; however, secondary transplants did not reliably result in long-term engraftment, indicating a reduced capacity for self-renewal. Transplantation of CD90-CD45RA+ cells did not result in any detectable human hematopoietic cells, indicating that the function of these cells is undetermined. Finally, transplantation of limiting numbers of CD90-CD45RA- cells (less than 100) resulted in multilineage human engraftment at 4 weeks, that was no longer detectable by 12 weeks. Thus, the CD90-CD45RA- subpopulation is capable of multilineage differentiation while exhibiting limited self-renewal ability. We believe this study represents the first prospective identification of a population of human multipotent progenitors, Lin-CD34+CD38-CD90-CD45RA- cord blood.


Blood ◽  
2011 ◽  
Vol 117 (18) ◽  
pp. 4773-4777 ◽  
Author(s):  
Hal E. Broxmeyer ◽  
Man-Ryul Lee ◽  
Giao Hangoc ◽  
Scott Cooper ◽  
Nutan Prasain ◽  
...  

Abstract Cryopreservation of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) is crucial for cord blood (CB) banking and transplantation. We evaluated recovery of functional HPC cryopreserved as mononuclear or unseparated cells for up to 23.5 years compared with prefreeze values of the same CB units. Highly efficient recovery (80%-100%) was apparent for granulocyte-macrophage and multipotential hematopoietic progenitors, although some collections had reproducible low recovery. Proliferative potential, response to multiple cytokines, and replating of HPC colonies was extensive. CD34+ cells isolated from CB cryopreserved for up to 21 years had long-term (≥ 6 month) engrafting capability in primary and secondary immunodeficient mice reflecting recovery of long-term repopulating, self-renewing HSCs. We recovered functionally responsive CD4+ and CD8+ T lymphocytes, generated induced pluripotent stem (iPS) cells with differentiation representing all 3 germ cell lineages in vitro and in vivo, and detected high proliferative endothelial colony forming cells, results of relevance to CB biology and banking.


Blood ◽  
1999 ◽  
Vol 94 (8) ◽  
pp. 2686-2695 ◽  
Author(s):  
Franck E. Nicolini ◽  
Tessa L. Holyoake ◽  
Johanne D. Cashman ◽  
Pat P.Y. Chu ◽  
Karen Lambie ◽  
...  

Comparative measurements of different types of hematopoietic progenitors present in human fetal liver, cord blood, and adult marrow showed a large (up to 250-fold), stage-specific, but lineage-unrestricted, amplification of the colony-forming cell (CFC) compartment in the fetal liver, with a higher ratio of all types of CFC to long-term culture-initiating cells (LTC-IC) and a lower ratio of total (mature) cells to CFC. Human fetal liver LTC-IC were also found to produce more CFC in LTC than cord blood or adult marrow LTC-IC, and more of the fetal liver LTC-IC–derived CFC were erythroid. Human fetal liver cells regenerated human multilineage hematopoiesis in NOD/SCID mice with the same kinetics as human cord blood and adult marrow cells, but sustained a high level of terminal erythropoiesis not seen in adult marrow-engrafted mice unless exogenous human erythropoietin (Epo) was injected. This may be due to a demonstrated 10-fold lower activity of murine versus human Epo on human cells, sufficient to distinguish between a differential Epo sensitivity of fetal and adult erythroid precursors. Examination of human LTC-IC, CFC, and erythroblasts generated either in NOD/SCID mice and/or in LTC showed the types of cells and hemoglobins produced also to reflect their ontological origin, regardless of the environment in which the erythroid precursors were generated. We suggest that ontogeny may affect the behavior of cells at many stages of hematopoietic cell differentiation through key changes in shared signaling pathways.


1986 ◽  
Vol 9 (5) ◽  
pp. 301-304 ◽  
Author(s):  
S. Stefoni ◽  
A. Nanni Costa ◽  
G. Liviano D'Arcangelo ◽  
M. Biavati ◽  
S. lannelli ◽  
...  

Biocompatibility of charcoal hemoperfusion was studied in a group of 15 uremic patients, evaluating the effects of long-term treatment on some structural and functional parameters of circulating lymphocytes: in vivo distribution of T-cell subsets; surface T3, T4 and T8 antigen expression, in vivo and in vitro DNA synthesis. A comparative analysis was performed with patients on conventional dialysis using cuprophan membranes.


Blood ◽  
2009 ◽  
Vol 113 (12) ◽  
pp. 2661-2672 ◽  
Author(s):  
Alex J. Tipping ◽  
Cristina Pina ◽  
Anders Castor ◽  
Dengli Hong ◽  
Neil P. Rodrigues ◽  
...  

Abstract Evidence suggests the transcription factor GATA-2 is a critical regulator of murine hematopoietic stem cells. Here, we explore the relation between GATA-2 and cell proliferation and show that inducing GATA-2 increases quiescence (G0 residency) of murine and human hematopoietic cells. In human cord blood, quiescent fractions (CD34+CD38−HoechstloPyronin Ylo) express more GATA-2 than cycling counterparts. Enforcing GATA-2 expression increased quiescence of cord blood cells, reducing proliferation and performance in long-term culture-initiating cell and colony-forming cell (CFC) assays. Gene expression analysis places GATA-2 upstream of the quiescence regulator MEF, but enforcing MEF expression does not prevent GATA-2–conferred quiescence, suggesting additional regulators are involved. Although known quiescence regulators p21CIP1 and p27KIP1 do not appear to be responsible, enforcing GATA-2 reduced expression of regulators of cell cycle such as CCND3, CDK4, and CDK6. Enforcing GATA-2 inhibited human hematopoiesis in vivo: cells with highest exogenous expression (GATA-2hi) failed to contribute to hematopoiesis in nonobese diabetic–severe combined immunodeficient (NOD-SCID) mice, whereas GATA-2lo cells contributed with delayed kinetics and low efficiency, with reduced expression of Ki-67. Thus, GATA-2 activity inhibits cell cycle in vitro and in vivo, highlighting GATA-2 as a molecular entry point into the transcriptional program regulating quiescence in human hematopoietic stem and progenitor cells.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3213-3213
Author(s):  
Oliver Christ ◽  
Clayton Smith ◽  
Karen Leung ◽  
Melisa Hamilton ◽  
Connie J. Eaves

Abstract Throughout adult life, human hematopoiesis is sustained by the activity of a small compartment of pluripotent stem cells with extensive self-renewal potential. Available evidence suggests that these cells undergo a process of progressive lineage restriction similar to that described for murine hematopoietic cells, although many of the intermediate stages of human hematopoiesis have not yet been characterized. In human hematopoietic tissues, cells with short-term (<4 months) as well as long term (>4 months) repopulating activity (termed STRCs and LTRCs, respectively) are distinguished by their differential ability to engraft sublethally irradiated NOD/SCID-β2microglobulin null mice as well as their transient versus sustained output of differentiated cells. In previous studies, both a myeloid-restricted type of human STRC (STRC-M) and a type of STRC with lymphoid as well as myeloid potential (STRC-ML) have been identified. STRC-Ms are CD34+CD38+ and produce mainly erythroid progeny for the first 3–4 weeks post-transplant. In contrast, STRC-MLs are CD34+CD38− and produce progeny only between weeks 5 and 12 post-transplant which consist mainly of B-lymphoid cells plus some granulopoietic cells. We show here that both STRC-MLs and STRC-Ms are similarly distributed among lin- cord blood cells with intermediate to high levels of aldehyde dehydrogenase activity (ALDH-int/hi) as evidenced by staining with the fluorescent dye BAAA. In addition, BAAA-staining has allowed a previously undescribed primitive cell with low ALDH activity (ALDH-lo) and lymphoid-restricted repopulating activity to be identified. Assessment of NOD/SCID-β2microglobulin null mice transplanted with various subsets of cord blood cells further demonstrated that these “STRC-Ls” are CD38− and 10-fold more prevalent in the CD133+ subset of the low-density SSC-low ALDH-lo/neg population but, numerically, are equally distributed between the CD133+ and CD133− fractions because of the proportionately larger size of the CD133− subpopulation. Phenotype analysis of CD34+CD38− cord blood cells revealed a small and distinct ALDH-lo subset that expressed 10-fold higher levels of CD7 than any other CD34+CD38− cells. However, transplantation of this small CD7++ subset into NOD/SCID- β2microglobulin null mice revealed that they accounted for very few of the ALDH-lo STRC-Ls. The discovery of a CD38− ALDH-lo population of lymphoid-restricted human cells with in vivo reconstituting activity identifies a key step in the process of human hematopoietic cell lineage determination and the ability to prospectively isolate these progenitors separately from other types of short- and long-term repopulating cells present in normal human hematopoietic tissues should greatly facilitate future analysis of the mechanisms regulating their normal differentiation or malignant transformation.


2003 ◽  
Vol 374 (2) ◽  
pp. 423-431 ◽  
Author(s):  
Christopher D. DEPPMANN ◽  
Tina M. THORNTON ◽  
Fransiscus E. UTAMA ◽  
Elizabeth J. TAPAROWSKY

BATF is a member of the AP-1 (activator protein-1) family of bZIP (basic leucine zipper) transcription factors that form transcriptionally inhibitory, DNA binding heterodimers with Jun proteins. In the present study, we demonstrate that BATF is phosphorylated in vivo on multiple serine and threonine residues and at least one tyrosine residue. Reverse-polarity PAGE revealed that serine-43 and threonine-48 within the DNA binding domain of BATF are phosphorylated. To model phosphorylation of the BATF DNA binding domain, serine-43 was replaced by an aspartate residue. BATF(S43D) retains the ability to dimerize with Jun proteins in vitro and in vivo, and the BATF(S43D):Jun heterodimer localizes properly to the nucleus of cells. Interestingly, BATF(S43D) functions like wild-type BATF to reduce AP-1-mediated gene transcription, despite the observed inability of the BATF(S43D):Jun heterodimer to bind DNA. These data demonstrate that phosphorylation of serine-43 converts BATF from a DNA binding into a non-DNA binding inhibitor of AP-1 activity. Given that 40% of mammalian bZIP transcription factors contain a residue analogous to serine-43 of BATF in their DNA binding domains, the phosphorylation event described here represents a mechanism that is potentially applicable to the regulation of many bZIP proteins.


Blood ◽  
1995 ◽  
Vol 85 (4) ◽  
pp. 952-962 ◽  
Author(s):  
JC van der Loo ◽  
WA Slieker ◽  
D Kieboom ◽  
RE Ploemacher

Monoclonal antibody ER-MP12 defines a novel antigen on murine hematopoietic stem cells. The antigen is differentially expressed by different subsets in the hematopoietic stem cell compartment and enables a physical separation of primitive long-term repopulating stem cells from more mature multilineage progenitors. When used in two-color immunofluorescence with ER-MP20 (anti-Ly-6C), six subpopulations of bone marrow (BM) cells could be identified. These subsets were isolated using magnetic and fluorescence-activated cell sorting, phenotypically analyzed, and tested in vitro for cobblestone area-forming cells (CAFC) and colony-forming units in culture (CFU-C; M/G/E/Meg/Mast). In addition, they were tested in vivo for day-12 spleen colony-forming units (CFU-S-12), and for cells with long-term repopulating ability using a recently developed alpha-thalassemic chimeric mouse model. Cells with long-term repopulation ability (LTRA) and day-12 spleen colony-forming ability appeared to be exclusively present in the two subpopulations that expressed the ER-MP12 cell surface antigen at either an intermediate or high level, but lacked the expression of Ly- 6C. The ER-MP12med20- subpopulation (comprising 30% of the BM cells, including all lymphocytes) contained 90% to 95% of the LTRA cells and immature day-28 CAFC (CAFC-28), 75% of the CFU-S-12, and very low numbers of CFU-C. In contrast, the ER-MP12hi20- population (comprising 1% to 2% of the BM cells, containing no mature cells) included 80% of the early and less primitive CAFC (CAFC-5), 25% of the CFU-S-12, and only 10% of the LTRA cells and immature CAFC-28. The ER-MP12hi cells, irrespective of the ER-MP20 antigen expression, included 80% to 90% of the CFU-C (day 4 through day 14), of which 70% were ER-MP20- and 10% to 20% ER-MP20med/hi. In addition, erythroblasts, granulocytes, lymphocytes, and monocytes could almost be fully separated on the basis of ER-MP12 and ER-MP20 antigen expression. Functionally, the presence of ER-MP12 in a long-term BM culture did not affect hematopoiesis, as was measured in the CAFC assay. Our data demonstrate that the ER-MP12 antigen is intermediately expressed on the long-term repopulating hematopoietic stem cell. Its level of expression increases on maturation towards CFU-C, to disappear from mature hematopoietic cells, except from B and T lymphocytes.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3184-3184
Author(s):  
Shuro Yoshida ◽  
Fumihiko Ishikawa ◽  
Leonard D. Shultz ◽  
Noriyuki Saito ◽  
Mitsuhiro Fukata ◽  
...  

Abstract Human cord blood (CB) CD34+ cells are known to contain both long-term hematopoietic stem cells (LT-HSCs) and lineage-restricted progenitor cells. In the past, in vitro studies suggested that CD10, CD7 or CD127 (IL7Ra) could be candidate surface markers that could enrich lymphoid-restricted progenitor cells in human CB CD34+ cells (Galy A, 1995, Immunity; Hao QL, 2001, Blood; Haddad R, 2004, Blood). However, in vivo repopulating capacity of these lymphoid progenitors has not been identified due to the lack of optimal xenogeneic transplantation system supporting development of human T cells in mice. We aim to identify progenitor activity of human CB CD34+ cells expressing CD10/CD7 by using newborn NOD-scid/IL2rgKO transplant assay that can fully support the development of human B, T, and NK cells in vivo (Ishikawa F, 2005, Blood). Although LT-HSCs exist exclusively in Lin-CD34+CD38- cells, not in Lin-CD34+CD38+ cells, CD10 and CD7 expressing cells are present in Lin-CD34+CD38- cells as well as in Lin-CD34+CD38+ cells (CD10+CD7+ cells, CD10+CD7- cells, CD10-CD7+ cells, CD10-CD7- cells accounted for 4.7+/−2.7%, 10.5+/−1.9%, 7.6+/−4.4%, and 77.1+/−5.2% in Lin-CD34+CD38- CB cells, respectively). We transplanted 500–6000 purified cells from each fraction into newborn NOD-scid/IL2rgKO mice, and analyzed the differentiative capacity. CD34+CD38-CD10-CD7- cells engrafted long-term (4–6 months) in recipient mice efficiently (%hCD45+ cells in PB: 30–70%, n=5), and gave rise to all types of human lymphoid and myeloid progeny that included granulocytes, platelets, erythroid cells, B cells, T cells, and NK cells. Successful secondary reconstitution by human CD34+ cells recovered from primary recipient bone marrow suggested that self-renewing HSCs are highly enriched in CD34+CD38–CD10–CD7- cells. CD10–CD7+ cells were present more frequently in CD34+CD38+ cells rather than in CD34+CD38- cells. Transplantation of more than 5000 CD34+CD38+CD10–CD7+ cells, however, resulted in less than 0.5% human cell engraftment in the recipients. Within CD34+CD38–CD10+ cells, the expression of CD7 clearly distinguished the distinct progenitor capacity. At 8 weeks post-transplantation, more than 70% of total human CD45+ cells were T cells in the CD10+CD7+ recipients, whereas less than 30% of engrafted human CD45+ cells were T cells in the CD10+CD7– recipients. In the CD10+CD7- recipients, instead, more CD19+ B cells and HLA–DR+CD33+ cells were present in the peripheral blood, the bone marrow and the spleen. Both CD34+CD38–CD10+CD7+ and CD34+CD38–CD10+CD7- cells highly repopulate recipient thymus, suggesting that these progenitors are possible thymic immigrants. Taken together, human stem and progenitor activity can be distinguished by the expressions of CD7 and CD10 within Lin-CD34+CD38- human CB cells. Xenotransplant model using NOD-scid/IL2rgKO newborns enable us to clarify the heterogeneity of Lin-CD34+CD38- cells in CB by analyzing the in vivo lymphoid reconstitution capacity.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2444-2444
Author(s):  
Ewa K Zuba-Surma ◽  
Magdalena Kucia ◽  
Rui Liu ◽  
Mariusz Z Ratajczak ◽  
Janina Ratajczak

Abstract Recently, we identified a population of very small embryonic-like (VSEL) stem cells in umbilical cord blood (CB) (Leukemia2007;21:297–303) These VSELs are: smaller than erythrocytes; SSEA-4+/Oct-4+/CD133+/CXCR4+/Lin−/CD45−; responsive to SDF-1 gradient; and iv) possessing large nuclei that contain unorganized chromatin (euchromatin). Data obtained in a murine model indicate that a similar cell population isolated from bone marrow (BM) does not reveal hematopoietic activity after isolation. However, in appropriate models (i.e., in vitro co-culture over OP-9 cells or in vivo after intra bone injection), these cells contribute to hematopoiesis and thus possesses potential of long term repopulating hematopoietic stem cells (LT-HSCs). To investigate the hematopoietic activity of CB-derived, CD45 negative VSELs, we employed staining with Aldefluor detecting aldehyde dehydrogenase (ALDH), the enzyme expressed in primitive hematopoietic cells. We sorted CD133+/CD45−/ALDHhigh and CD133+/CD45−/ALDHlow sub-fractions of VSELs from CB samples and established that both freshly sorted CB-derived populations did not grow hematopoietic colonies in vitro. However, when activated/expanded over OP-9 stroma cells, they exhibit hematopoietic potential and initiate hematopoietic colonies composed of CD45+ cells when replated into methylcellulose cultures. Furthermore, while CD133+/CD45−/ALDHhigh VSELs gave raise to hematopoietic colonies after the first replating, the formation of colonies by CD133+/CD45−/ALDHlow VSELs was delayed. The data indicate that both populations of CD45− cells may acquire hematopoietic potential; however hematopoietic specification is delayed for CD133+/CD45−/ALDHlow cells (Fig. 1A). In parallel, real time PCR analysis revealed that freshly isolated CD133+/CD45−/ALDHhigh VSELs express more hematopoietic transcripts (e.g., c-myb, 80.2±27.4 fold difference) while CD133+/CD45−/ALDHlow exhibit higher levels of pluripotent stem cell markers (e.g., Oct-4, 119.5±15.5 fold difference) as compared to total CB mononuclear cells (Fig. B). Furthermore and somewhat unexpectedly, we found that because of their unusually small size, these important cells may be partially depleted (in 42.5±12.6%) during standard preparation strategies of CB units for storage that employ volume reduction. In conclusion, our data suggest very small CB mononuclear cells expressing VSEL markers that are CD133+/CD45−/ALDHlow are highly enriched for the most primitive population of LT-HSCs. These cells may be responsible for long term CB engraftment and be a population of cells from which HSCs should be expanded. We are currently testing this in an in vivo model by performing heterotransplants of CD45− ALDHlow VSELs into immunodeficient mice. It is important to stress that currently employed, routine CB processing strategies may lead up to ~50% loss of these small cells that are endowed with such remarkable hematopoietic activity. Figure Figure


Sign in / Sign up

Export Citation Format

Share Document