Immunogenicity of a BCR-ABL e1a2 p190 Translocation in a Balb/c Mouse Model.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2868-2868
Author(s):  
Marta Gomez-Nunez ◽  
Javier Pinilla-Ibarz ◽  
Tao Dao ◽  
Victoriya Zakhaleva ◽  
Tatyana Korontsvit ◽  
...  

Abstract Intracellular processing of the breakpoint products of the bcr-abl fusion gene may generate novel peptides that, if capable of binding to HLA class I molecules, would be potential targets for a cytotoxic T lymphocyte (CTL) response. In humans, peptides derived from the e1a2 p190 breakpoint have generated peptide-specific MHC class II proliferative responses. Short peptides have shown binding to MHC class I molecules, although processing and presentation of endogenous p190 protein has not been shown. In a Kd Balb/c mouse model, we tested the hypothesis that single, key amino acids near the breakpoint could be the reason of lack of immunogenicity of the p190 breakpoint peptides. We synthesized a native peptide from the 190 breakpoint (AFHGDAEAL) as well as a synthetic mutated peptide (AYHGDAEAL), which showed excellent predicted binding on the BIMAS algorithm (1152 and 2880 respectively), although in vivo experiments did not show any specific CTL response. In order to assess if the lack of immunogenicity in vivo was due to the absence of binding to the MHC class I molecule rather than to poor TCR interactions, we designed a series of peptides where neutral amino acid, alanine, substitutions were introduced at different potential binding sites in the synthetic peptide: at position three (AYAGDAEAL), position four (AYHADAEAL), position five (AYHGAAEAL) and position seven (AYHGDAAAL). The binding of these altered peptides to H2 class I was assessed using a MHC stabilization assay on T2-Kd cells (TAP deficient cells). In spite of the good computer prediction for binding the MHC stabilization assay did not show evidence of binding of the native and synthetic peptides (<1.9 over the background). In contrast, alanine substitution in position five resulted in the best binding (3.5x over the background). Alanine substitutions in positions three, four and seven also showed improved binding to Kd molecules (2.6x, 3.1x and 3x over the background respectively). These results were confirmed by immunization in vivo with these altered peptides. Only the peptide with the alanine substitution in position five generated a immune response in a CD8 gamma-IFN Elispot assay. Since the altered peptides with the alanine substitutions in positions three, four and seven have shown binding to the Kd molecules, but not a CTL response, change of the aspartic acid in position five near to the fusion breakpoint allows appropriate presentation and recognition of the sequence by the TCR.

1997 ◽  
Vol 186 (5) ◽  
pp. 645-653 ◽  
Author(s):  
Daniel E. Speiser ◽  
Renata Miranda ◽  
Arsen Zakarian ◽  
Martin F. Bachmann ◽  
Kim McKall-Faienza ◽  
...  

Induction and maintenance of cytotoxic T lymphocyte (CTL) activity specific for a primary endogenous tumor was investigated in vivo. The simian virus 40 T antigen (Tag) expressed under the control of the rat insulin promoter (RIP) induced pancreatic β-cell tumors producing insulin, causing progressive hypoglycemia. As an endogenous tumor antigen, the lymphocytic choriomeningitis virus (LCMV) glycoprotein (GP) was introduced also under the control of the RIP. No significant spontaneous CTL activation against GP was observed. However, LCMV infection induced an antitumor CTL response which efficiently reduced the tumor mass, resulting in temporarily normalized blood glucose levels and prolonged survival of double transgenic RIP(GP × Tag2) mice (137 ± 18 d) as opposed to control RIP-Tag2 mice (88 ± 8 d). Surprisingly, the tumor-specific CTL response was not sustained despite the facts that the tumor cells continued to express MHC class I and LCMV-GP–specific CTLs were present and not tolerized. Subsequent adoptive transfer of virus activated spleen cells into RIP(GP × Tag2) mice further prolonged survival (168 ± 11 d), demonstrating continued expression of the LCMV-GP tumor antigen and MHC class I. The data show that the tumor did not spontaneously induce or maintain an activated CTL response, revealing a profound lack of immunogenicity in vivo. Therefore, repetitive immunizations are necessary for prolonged antitumor immunotherapy. In addition, the data suggest that the risk for induction of chronic autoimmune diseases is limited, which may encourage immunotherapy against antigens selectively but not exclusively expressed by the tumor.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3152-3152
Author(s):  
Benjamin J Uttenthal ◽  
Emma Nicholson ◽  
Ben Carpenter ◽  
Sara Ghorashian ◽  
Graham P Wright ◽  
...  

Abstract Abstract 3152 Alloreactive immune responses directed against malignant cells in recipients of allogeneic hematopoietic stem cell transplants are able to cure patients with hematological cancers. However, such immune responses may cause severe morbidity when directed against healthy recipient tissue, resulting in graft-versus-host disease (GvHD). Naturally occurring regulatory T cells (Tregs) are CD4+ T cells characterized by their expression of the transcription factor Foxp3. Whilst adoptively transferred polyclonal Tregs suppress GvHD in several murine models, their lack of specificity may compromise beneficial immunity against malignancy or infection. The generation of MHC class I-restricted, alloantigen-specific Tregs would allow them to recognize antigen presented directly on GvHD target tissues, concentrating their sites of activation at these tissues and possibly reducing the potential for non-specific immune suppression. We have generated ‘converted’ Tregs through retroviral transfer of genes encoding Foxp3 and specific MHC class I-restricted T cell receptors (TCRs) into polyclonal conventional CD4+ T cells. We used the 2C-TCR, which recognizes the MHC class I molecule H-2Ld, expressed in Balb/c and other H-2d mice, in complex with the ubiquitously expressed peptide p2Ca; and the MH-TCR, which recognizes the MHC class I molecule H-2Db, expressed in B6 and other H-2b mice, in complex with the male peptide WMHHNMDLI. In vitro, Foxp3 2C-TCR-transduced B6 polyclonal CD4+ T cells were hyporesponsive to stimulation and suppressed the alloreactive proliferative response of B6 CD4+ and CD8+ T cells to Balb/c splenocytes, consistent with the acquisition of regulatory function. When adoptively transferred to lethally irradiated Balb/c recipients of MHC-mismatched B6 bone marrow and conventional T cells, Foxp3 2C-TCR-transduced B6 polyclonal CD4+ T cells significantly reduced early proliferation of donor T cells, weight loss and GvHD score in the recipients. Similarly, polyclonal CD4+ T cells transduced with Foxp3 and the MH-TCR caused marked suppression of allogeneic responses both in vitro and in vivo. However, while both the 2C-TCR and the MH-TCR conferred specificity to their cognate antigens in vitro, the potent suppression in these in vivo models was independent of the cognate antigen for the transduced TCRs. This non-specific suppression was markedly reduced when class I-restricted TCRs were transduced into OT-II Rag1-/- CD4+ T cells that are transgenic for a single endogenous TCR. These findings demonstrate an important role for the endogenous TCRs in driving non-specific suppression by polyclonal CD4+ T cells transduced with Foxp3 and class I-restricted TCRs, and suggest that strategies to downregulate endogenous TCRs will be required to achieve antigen-specific suppression in TCR gene-modified regulatory T cells. Disclosures: No relevant conflicts of interest to declare.


2005 ◽  
Vol 201 (7) ◽  
pp. 1145-1155 ◽  
Author(s):  
Sofia Johansson ◽  
Maria Johansson ◽  
Eleftheria Rosmaraki ◽  
Gustaf Vahlne ◽  
Ramit Mehr ◽  
...  

The ability of murine NK cells to reject cells lacking self MHC class I expression results from an in vivo education process. To study the impact of individual MHC class I alleles on this process, we generated mice expressing single MHC class I alleles (Kb, Db, Dd, or Ld) or combinations of two or more alleles. All single MHC class I mice rejected MHC class I–deficient cells in an NK cell–dependent way. Expression of Kb or Dd conveyed strong rejection of MHC class I–deficient cells, whereas the expression of Db or Ld resulted in weaker responses. The educating impact of weak ligands (Db and Ld) was further attenuated by the introduction of additional MHC class I alleles, whereas strong ligands (Kb and Dd) maintained their educating impact under such conditions. An analysis of activating and inhibitory receptors in single MHC class I mice suggested that the educating impact of a given MHC class I molecule was controlled both by the number of NK cells affected and by the strength of each MHC class I–Ly49 receptor interaction, indicating that NK cell education may be regulated by a combination of qualitative and quantitative events.


2001 ◽  
Vol 33 (1-2) ◽  
pp. 583-584 ◽  
Author(s):  
M.N Scherer ◽  
C Graeb ◽  
S Tange ◽  
M Justl ◽  
K.-W Jauch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document